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Preface

The inherent harmony of periodic motions as well as of symmetry has exerted
its own fascination, as it seems, ever since the dawn of thought. Today, such a
“harmonia mundi” is at least hoped for on just about any poesxble scale: from
elementary particle physics to astronomy. o S

In search of some harmony let us ask naive questions. Suppose we are given a
dynamlc‘al system with some built-in symmetry, Should we expect periodic motions
which somehow reflect this symmetry? And how would periodicity harmonize with
symimetry?

These almost innocent questions are the entrance to a labyrinth of intricacies.
Probing only along some fairly safe threads.we are lead from dynamics to topology,
algebra, singularity theory, numerical analysis, and to some applications. A global
pomt of view.will be one guiding theme along,our way: we are mainly interested
in periodic motions far from equilibrium.

For a method we rely on bifurcation theory, on transversality theory, and on
generic approximations. As a reward we encounter known local singularities. As a
central new aspect we study the global interaction and interdependence of these
local singularities, designing a homotopy invariant. As a result, we obtain an index
X which evaluates only information at stationary solutions. Nonzero ¥ implies
global Hopf bifurcation of periodic solutions with certain symmetries. Putting it
emphatically, ¥ harmonizes symmetry and periodicity . Curiously, ¥ need not be
homotopy invariant.dt is one of my favorite speculations that this obstruction may
hint at chaotic motions.

Cyclic motions relate to cyclic groups. Phrasing this relation between dyna-
mics and algebra less sloppily: the symmetry of a periodic solution of a dynamical
system is related to a cyclic factor within the group of symmetries of that system.
Curiously, some period doubling bifurcations relate to the number 2, acting by
multiplication on such a cyclic group. The multiplicative order of 2 relates to the
number of possibly different indices ¥ for a given system.

Symmetry, though beautiful, causes numerical difficulties. Basically, groups
with irreducible representations of higher dimensions entail higher local singula-
rities which are not very well understood. This is an obstacle to numerical path-
following algorithms. We will give a complete list of the easier, lower-dimensional
generic bifurcations. Avoiding cyclic loops in the associated global bifurcation dia-
grams by a suitable homotopy invariant will be a central issue in our theoretical
analysis. Both aspects are essential prerequisites for an efficient numerical path-
following method in dynamical systems with symmetries.

In real applications, as in real life, the lofty regions of harmony, periodicity,
and symmetry are always confronted with the abysmal danger of destabilization.
Surprisingly, there are still some applications where periodicity and symmetry is
observed. We will concentrate on chemical waves as a model example below, though
the theory is general. We obtain rotating waves (spirals) in continuous geometries,
and phase-locked oscillations in discrete geometries.
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s1. Introduction

§1.1 The question

We would like to find time-periodic solutions z(t) of a nonlinear autonomous dynamical

system
z(t) = f(X z(1)), (1.1)

In applications, such systems always contain parameters (coefficients). Let A € 4 := R denote
one of them. Finding periodic solutions is usually more difficult than finding stationary, i.e.
time-independent solutions z(t) = z¢. Stationary solutions (Ao, zo) satisfy

zeX:=RN, fec!

0 = f(Xo,%0)- (1.2)
Hopf bifurcation draws conclusions on periodic solutions of (1.1) from information on sta-
tionary solutions (1.2); and here and below we mean “nonstationary periodic” when we say
periodic.

To describe local Hopf bifurcation suppose for a moment that f(X,0) = 0, for all real A.
Assume that the linearization D, f(),0) at the stationary solution (A, 0) has a pair of simple

eigenvalues
A x18(A), B(A) >0 (1.3)
for small [A|. Then at least the linearized equation, at A =0, .
v=D.f(0,0)y (1.4)

has periodic solutions y(t) of minimal period 27 /8(0). If £18(0) are the only purely imaginary
eigenvalues of D, f(0,0), then the local Hopf bifurcation theorem, e.g. [Cra&Rab2], states
that (1.1) with f € C? has periodic solutions near A = 0, = 0. In fact, these periodic
solutions form a continous branch and their minimal periods are close to 27 /£(0). Without
a parameter A, i.e. for fixed A = 0, such a result could not hold in general.

The result above is called “local”, because it only finds periodic solutions in some possibly
very small neighborhood of A = 0, z = 0. Global Hopf bifurcation finds periodic solutions
which may be far away from this neighborhood, where they originated. The first result in
this direction is due to Alexander & Yorke {Ale&Y1], see §1.3 and in particular (1.29) for
more details. Global Hopf bifurcation is our main concern here. Of course, global bifurcation
implies local bifurcation.

Global as well as local bifurcation results require essentially some change of stability. Let
us explain this with our previous example, f(A,0) = 0. Denote

E()) : the number of eigenvalues of D, f(X,0) with strictly positive (1.5)
real part, counting algebraic multiplicity.

In other words, E()) is the unstable (“expanding”) dimension of the stationary solution
(A,0). Then assumption (1.3) on the crossing of the pair of eigenvalues A + 13()) through
the imaginary axis implies that E()) changes by 2 as X increases through zero. We call this
a “change of stability”. Our principal goal will be an index ¥ which evaluates changes of
stability in such a way that ¥ # 0 implies global Hopf bifurcation.
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Mot v

However, we are interested in dynamical systems (1.1) with symmetry. Throughout we
assume ‘

PR AR

I is a compact Lie group, acting orthogonally on X == RN by a (1.6a)
linear representation p.

In other words:
p:I— O(n)

v+ p(7)

is a homorphism from the compact Lie group I into the group O(N) of orthogonal N x N-
matrices. See e.g. [Bre, Bro&tD, Sat& Wea] for generalities on Lie groups and representations.
For practical purposes, we may assnme that p(y) = id only for y = id . This allows us to view
T as a closed subgroup of O(N). A short-hand motation for the action of I is 7z :== p(7)z,
forye I', z € X. To tie up the group I" with our system (1.1), we require f to be equivariunt
with respect to the action p of T, i.e.

Pl U R

2 x

;.

Fvzy=f(M\z), foraliyel, Ae R, z&RV. (1.6b)

Then (1.1) remains unchanged, if we replace x by yx. Thus, if z(¢) is a solution of (1.1),
then 7z(t) is also a solution, regardless what 7 € I" we choose. See e.g. [Satl, Vanl] for a
reference on bifurcation theory for equivariant f.

'If z(t) is a periodic solution of system {1.1), then z(t) may describe the same trajectory
as z(t) for suitably chosen -y € I'. In fact 7 could leave each point of z(¢) fixed, individually.
Or « could leave the periodic orbit {z{t)jt € R} fixed, as a set, possibly phase-shifting the
individual points on it. In both cases we say that 4 belongs to the symmetry of the periodic
solution z(t). For more precision see §1.2, definition 1.1. This notion of symmetry leads us
to our principal gquestion:

(T A AP
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How can we find periodic solutions with prescribed symmetry? 1.7
For linear equivariant equations like {1.4), where D f(0, 0) has purely imaginary eigenvalres, . i
we might find periodic solution and their symmetry explicitly, knowing the representation -
of I' on the eigenspace. For results on local Hopf bifurcation for nonlinear systems with o
symmetry see e.g. [Go&:St1]. -
We approach question (1.7) from a global point of view, here. We design an index 9
+d
| Ho.Ko (1.8)
such that nonzero ¥ implies global Hopf bifurcation with certain possible symmetries. Again, e
¥ evaluates changes of stability of stationary solutions via purely imaginary eigenvalues in .
certain representation subspaces of X. For some more details see §1.4. A complete recipe is -

given in our main results: theorems 2.9 and 2.10 below.

Let us consider a first typical, but simple example: three identical, mutually coupled
oscillators. Such examples go back to Turing [Tu]. With z = (z,1;,32), z; € R", z € R*"
our example may be writien as

.y -.ﬁ-.j*,-".'- R
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Fig. 1.1 Three coupled oscillators

Ty = Ji(ro) +(z2 — 229 + 1731)
) = f(z1) + (20 — 211 + 22) ' (1.9)

-~

zo = f(z2) + (21 — 222 + Zo).

We suppress the parameter A, here. In fig. 1.1 we depict system (1.9) as an equilateral
triangle. The vertices stand for the oscillators 9 =,Z; =,Z» =, and the sides represent
“diffusive ” coupling. System (1.9) remains invariant under any permutation of the indices
{0,1,2}; the right hand side is equivariant under I" := §3, the symmetric group (permutations
of three elements). From fig. 1.1 we see that §3 is isomorphic to the dihedral group D3, the
group of orthogonal maps in the plane which leave an equilateral triangle invariant. System
(1.9) could oscillate periodically in various ways: homogeneously (zo(t) = z;(¢) = z2(t)), with
reflection symmetry (zo(t) # z3(t) = z2(t)), with fixed phase-shifts over one third period
between adjacent z;(t), or without any noticeable relation between the z;(t). Answering
question (1.7), our index X will allow us a detailed global analysis of these phenomena, cf.
§8.1. The first global results on such rings of coupled oscillators are due to Alexander &
Auchmuty [Ale&Au2]. They rely on a topological result on global bifurcation of zeros of
mappings with several (two) parameters [Alel, Ale&Fitz].

Our approach to question (1.7) is more geometrically inclined. Motivated by the “snakes”-
paper of Mallet-Paret & Yorke [M-P&Y1,2] we use generic, but somewhat equivariant appro-
ximations to the original problem (1.1). This will have the advantage that only a few types
of bifurcations occur, and global bifurcation diagrams can be understood systematically. We
discuss this in §1.5 and, in excessive detail, in §§3,5-7,10. In [M-P&Y1,2|, only the case of no
symmetry, I' = {id}, was considered. Another root for our approach was the elegant geome-
tric treatment of local equivariant Hopf bifurcation by Golubitsky & Stewart [Go&Sch&St,
Go&St1]. It inspired the very question (1.7), as well as our definition of symmetry of a
| periodic solution, and is behind the scene of most of our technical set-up.

Why should anyone be interested in a question like (1.7) 7 Our motivation is both “pure”
and “applied”. Symmetry prevails in many applied problems, e.g. oscillations in networks,

\;.\;.\:’\}V Wo 1% RN o

PR
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Fig. 1.2 A (clockwise) rotating spiral wave. courtesy of [Mii&Ple&Hess).

in fluid dynamics, and in chemical reaction diffusion systems. A spectacular example are the
rotating spirals in the Belousov-Zhabotinskii reaction, see fig. 1.2.

We devote §8 to such applications. Another “applied” goal is the development of quick,
flexible tests which detect oscillations and give some indication of their form in large distri-

buted systems. Paradoxically, global results apply more easily than local results (but do not -

allow conclusions on stability, direction of bifurcation, etc.). As a “pure” consequence we
obtain local bifurcating branches for situations which could not be treated in [Go&St1], see
theorem 9.1.

But local bifurcations, local singularities have been studied for quite a while now, even
in equivariant settings. Our analysis adds a significant global feature: we investigate the
interplay of these local singularities in global bifurcation diagrams. We believe that this
global feature can and should be incorporated into other contexts as well. Our problem of
global Hopf bifurcation with symmetry just serves as a model case.

Understanding the interplay of local singularities in global bifurcation diagrams usually un-
covers some topological relations and restrictions, like homotopy invariant indices. Knowing
these global restrictions, as well as the basic local singularities, is in turn a prerequisite to
a sucessful numerical homotopy method for concrete applications. The simplest example is
the monitoring of signs of determinants of the linearization, i.e. of Brouwer degree, to detect
stationary bifurcation points; see e.g. {Deu&Fie&Kun|. This closes the circle of “pure” and
“applied” motivations.
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§1.2 Symmetry of periodic solutions

Let us pin down what we mean by the symmetry of a periodic solution z(t) of the I'-
. equivariant differential equation (1.1). First we have to discuss “symmetries” of points z ¢ X.
‘ Given z € X the isotropy group I'; of z is defined as

- I;:={y€er|~yz=1z}. (1.10)
For example, consider the coupled oscillator system (1.9). If z = (z¢,z),22) with z, = 7} =
o then I'y = I'=83. Hzy # 23 = 12, then Iy, = {1d, (1 2)} =: ((12), 2 Z/2Z.

Conversely, given a subgroup K of I' we may define the fixed point subspace X of X by
XK .- {(ze XKz =1). (1.11)

So XK consists of all elements 7 of X with isotropy Iy at least K. In the example (1.9} we
have z € XU iffzo =2y =20, andze X1 2D iz, = zo. This last example shows that
XK may actually contain points z with I'y > K.

Throughout, we are interested in this typical case of a non-free group action where I'; may
depend on the choice of z # 0.

For solutions of (1.1) one would like to know I';. The significant property of the lineur
subspaces X¥ on the other hand, is their flow invariance:
2(0) € XK implies z(t) € XK, for all 1. (1.12)
Indeed, z € XK implies £ € XK | because

Ki=Kf()\z)=f()Kz)=f()1)= i

Now let us consider a periodic solution z(t) of (1.1} with minimal period p > 0. Let C :=
{z(t){ t € R} C X denote the trajectory of z(t). Then two relevant groups come to mind:

H:={yerl'[4C=C} (1.13.a)
K = I'I(t, = {’7 € Fl’YI(t) = I(t)} (ll3b)

Note that I',(,, is in fact independent of ¢ because, by flow invariance of the spaces XK,
z(0) € XT=) and z(t) € xT=0) 5. e Iy0) 2 Iyy) and Iy > Iy Thus K is well-
defined. Obviously, K is a subgroup of the closed group H. For any h € H, z(t) € C, we
have

h z(t) = z(t + 6(h) - p). (1.13.c)

Note that @(h) € R/Z is defined independently of ¢. In fact hz(t) solves the same differential
equation (1.1) as z(t) and the trajectories coincide as sets, by (1.13.a). Thus hz(t) coincides
with z(t), up to a phase shift.

The obviously continuous map

---------------



from H to the (additive) group R/Z is a homomorphism. Indeed

z(t + ©(h1h2) - p) = hihe 2(t) = by z(t + O(h2) - p) =
= z(t + (O(h1) + O(h2)) - p), ie.

O(hy he) = O(h1) + O(h2) (mod Z),

because p is the minimal period of z(t). By definition, ker® = K. By the homomorphism
theorem [vdW), Lang!, K is a closed normal subgroup of the Lie group H and

H/K = im6 (1.15)
may be viewed as a closed subgroup of R/Z, cf. |Bro&tD, §1.4]. Let

n-1
<R/Z, f <
n b R/Z, for n < oo (1.16.a)

1
Zy:={0,—-,...,

{ n

Z. =R/Z

denote the closed additive subgroups of R/Z. The cyclic groups Z, should not be mixed
up with the isomorphic groups

(1.16.6)
Z(x) =
With this notation, (1.15) implies that
H/K = {Zn, for some n < 00, or (1.17)
Z »

1.1 Definition :
Let z(t) be a periodic solution of system (1.1) with minimal period p > 0. We call the
triple (H, K, ©), defined by {1.13.a — ¢) above, the symmetry of z(t).

Referring to (1.17) above, we call z(¢) a

concentric wave if H = K
discrete wave if H/K>Z,, 1<n<oo
rotating wave if H/K=2Z, .

Let C C X be a set of stationary solutions of f(A,-), i.e.
f(A\,z)=0 forallz e C. (1.18.a)

We call C a frozen wave, if there exists 2o € C and subgroups K := I';, < H < T such
that the following two conditions hold:

C=H 1z (1.18.5)
K =1TI;,isnormalin H and H/K = Z . (1.18.¢)
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We call the triple (H, K, +0) the symmetry of the frozen wave C,if © : H — R/Z is any
surjective homomorphism with kernel K. '

We comment on definition 1.1. First of all, it seems redundant to include K = ker®
explicitly in the triple (H, K,©) which defines symmetry. Indeed, H and © alone would
suffice. Discussing secondary bifurcations it will be convenient to nevertheless keep track of
K explicitly.

In the symmetry (H, K,£8) of a frozen wave, the homomorphism @ is determined only
up to a sign. Indeed, © induces an isomorphism H/K — R/Z, and the only continuous
automorphisms of R/Z are given by multiplication with +1.

Condition (1.18.c) suggests that frozen waves are a pendant to rotating waves. Indeed, let
R be the infinitesimal generator of the action of H/K on XK. In detail: we represent this
action by orthogonal matrices, and obtain an isomorphism

v: Ze — HIK

1.19
t — exp(Rt). (1.19)

For some real a, consider the transformation
y(t) = exp(—aRt) z(t) (1.20)

on X® . Then y solves the equation

g(t) = —aR y(t) + f(A, y(t) = f(X,¥(2)). (1.21)

Choosing o = 1/p, it turns out that z(t) is a rotating wave for f iff H - z(0) is a frozen
wave for f. The transformation (1.20) tells us that a rotating wave “freezes”, if viewed in a
suitable rotating coordinate frame.

Conversely, let us start from a frozen wave z € C with symmetry (H, K,+6). Then the
transformation (1.20) yields a rotating wave y(t) with symmetry (H, K, ©) or (H, K, -6),
dependi;’ on the sign of a. Viewing this as a perturbation result we may say that a rotating
wave freezes and then starts rotating in the opposite direction, cf. definition 5.3 of a freezing,
and theorem 5.11.

Viewed still differently, (1.20) and (1.21) tell us that (A, z(t)) is a rotating wave if and
only if zg = z(0) with Rzg # 0 solves

= —aRzg + f(A, z0) (1.21)

for some a # 0. On the other hand, Hz( is a frozen wave if and only if zg with Rzg # 0
solves (1.21) fora=0.

Let us reinterpret symmetry of periodic solutions in an operator setting which is frequently
used in global Hopf bifurcation. We rescale the minimal period p of z(t) to 1, defining

£(r) = z(pr) . (1.22)
Then z(t) solves (1.1) iff £ solves

F(f,p, 0, 6) = —;;é+ fne=0 . (1.23)
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Denoting the Banach spaces of continuous resp. once continuously differentiable functions
with (not necessarily minimal) period 1 by ok resp. C!, we may view F(f,-,", ) for fixed f
as a map

F(f,,,):R*xRxC!'=C". (1.24)
Fixing also p, A, the map F(f,p, },-) is equivariant with respect to the action p of [:=TxS8!
on £ € CY or C! defined by

(A(7,9)€)(7) = p(n)E(7 ~ ¥), (1.25)

where we write S! for the additive group R/ Z.
We claim that z has symmetry (H, K,8) iff £, defined by (1.22), has isotropy

T¢ = HY := {(h,6(h)) | h € H}. (1.26)

As before, it is understood that K := ker®. To prove the claim, we follow the rea<oning in
[Go&:Stl, £6]. Applymg the definition of symmetry of z, it is sufficient to show that I‘g HY
for some subgroup H of T and some homomorphism 6:H S Letr:I'x S' - T
denote projection onto the first coordinate and define H := ﬂ'([‘f) Then [‘5 Nkerr = {id},
because £ has minimal period 1. Thus fE >~ H, and we may hence write f} as H? as was
claimed above. Following [Go&St1, §6] we call H® a twisted subgroup of I' x S§! with twist
o.

Fixing an isomorphism from Z, to H/K, we may represent the twist © by an integer
(mod n). Indeed, let hK generate H/K = Z, (assuming n < o00) and fix ¢ to be

L Z,— H/K

1.27
Lo, hK. (1.27)

Then
6(h) = (Bo(i) = € /n

for some ©* € Z(n). We will frequently identify h with 1/n and € with 6* € Z(n), writing
O6(h) =6 -h. (1.28) ]

Using the isomorphism (1.19) instead of (1.27), the case n = oo is treated similarly. Repre-
senting © by integers is particularly convenient for treating secondary bifurcations of periodic :
solutions, where & may change, cf. §5.

We illustrate our symmetry terminology with the triangle of coupled oscillators (1.9), see
fig. 1.1. Concentric waves, e.g., are periodic solutions z(t) with zo(t) = z;(t) = z(t). Their
symmetry is (H,K,0) = (I, I,0) where I' = §3. They satisfy z5 = f(zo), and diffusive
coupling can be ignored altogether. Another example is given by zo(t) # z;(t) = z2(t) with
H = K = ((1 2)), ©® =0. Such solutions satisfy

o = f(zo) + 2(z1 — 20)
i1 = f(z1) + (20 - 1)
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and represent two asymmetrically coupled oscillators. A discrete wave may have symmetry
H = {(12)),K = {id}, and © = 1, which means z5(t) = z)(t — §) and z¢(t) = zo(t - §).
Such solutions are sometimes called standing waves. Another type of discrete waves satisfies
H = {(0 1 2)), K = {id}, and @ = 1, which corresponds to

i.e. to fixed phase-differences between adjacent cells. Applying (1 2) € §3 to this solution we
obtain a discrete wave with © = 2 = —1 (mod 3), i.e. rotation in the opposite direction. For
examples of rotating and frozen waves see §8.2.

§1.3 Some references

The literature on bifurcation problems is vast. We give some standard references to the
field. Then we follow some of the threads to global bifurcation, concentrating on Hopf bi-
furcation. A more detailed attempt to put our results in perspective has to be postponed to
§9. As a general reference to local bifurcation theory we mention the books by Chow & Hale
[Chow& Ha], Golubitsky & Schaeffer [Go&:Sch], Guckenheimer & Holmes [Gu&Hol, looss &
Joseph [lo&Jo], as well as parts of Arnol’d [Arn3, ch.6], and Smoller [Smo, ch.13]. Bifurcati-
ons for iterates of maps are discussed e.g. in {lo]. Bifurcation theory for zeros of maps viz.
stationary solutions with several parameters is known as singularity theory or catastrophe
theory, see e.g. {Arnd, Arn&G-Z& Var, Go&Gui, Thom|.

More specifically, local Hopf bifurcation is named after E. Hopf. In [Hopf], 1942, he proves
the result which we have discussed in §1.1, assuming z € R™ and analytic f. His main
motivation, though, was hydrodynamics. Hopf himself mentions Poincaré, who has considered
the planar analytic Hamiltonian case being mainly motivated by periodically forced systems
in celestial mechanics, cf. [Poi, ch.XXX], 1899. The general planar case was discussed
extensively by Andronov and coworkers since 1929, see e.g. [And&Chai, And&Leo&Gor&Mai]
and the note in [Arn3, p.271]. In 1977 a proof covering the infinite-dimensional case was given
by Crandall & Rabinowitz [Cra&Rab2] in an analytic semigroup C2-setting. They just relied
on the implicit function theorem. Other modern accounts of local Hopf bifurcation, three of
them based on center manifolds, are given e.g. in the books of Chow & Hale [Chow&Ha,
§61.1.4, 3.4, 9.5, 9.6], Hassard & Kazarinoff & Wan [Has&Kaz& Wan}, Iooss & Joseph {lo&Jo],
and Marsden & McCracken [Mars&McCr].

The first global bifurcation result, concerning stationary solutions, is due to Rabinowitz
[Rab]. Returning to the setting f(A,0) = O with unstable dimension E(), as in (1.5), a
version may be phrased as follows. If E()) changes by an odd number, as X increases from
—00 to 400, then an unbounded continuum of stationary solutions bifurcates from the trivial
solution. The proof relies on degree theory, and we give a subjective version of it in §3; see
also [Chow&Ha, §5.8] and [Smo, ch.13].

As we have mentioned above, the first result on global Hopf bifurcation without symmetry
is due to Alexander & Yorke [Ale&Y1]; see also Ize [Izel]. They both introduce period p
explicitly as a parameter. In the above setting, suppose D, f(0,0) is nondegenerate, and
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D, f(X,0) has some purely imaginary eigenvalues for A = 0 but not for small 0 < |A] < e.
Assuming that

2(B(e)~ B(~¢)) s odd, (1.29)

they obtain a global bifurcating continuum € of periodic solutions, by topological arguments
involving stable homotopy theory. “Continuum” refers to the triple (p, A, £), and “global”
means that € is unbounded or returns to some other bifurcation point on the trivial branch.
Using Fuller degree [Ful], Chow & Mallet-Paret & Yorke [Chow&M-P&Y1] later relax con-
dition (1.29) to .

%(E(e) — E(-¢)) £0. (1.20)"
These results have one obvious and one subtle drawback. Obviously, we might not want to
call € “global”, if it remains bounded and just terminates at some other Hopf bifurcation
point. It is a more subtle aspect to construct examples of continua in (p, A, ) which are
unbounded, though A, ¢ and minimal periods remain bounded. A concrete example for this
important subtlety was constructed by Alligood & Mallet-Paret & Yorke [All&M-P& Y1}, cf.
§3.4 and fig. 3.3 below. This is possible because p in the operator setting (1.23) does not
necessarily stand for minimal period. In fact, if (p, A, £) is a solution then (p, A, £) is likewise
a solution, if we define

€8 (r) := €(k).
For a detailed discussion see §53 and 9.3.

Both drawbacks have been circumvented at the expense of introducing the notion of “virtual
periods”, cf. definition 1.2 below and §4. For generic nonlinearities f(A,z) the drawbacks
were fully remedied by Mallet-Paret & Yorke [M-P&Y1,2|, who follow continua (“snakes”)
in (A, z) and simultaneously keep track of minimal period. Virtual periods, as introduced by
Chow, Mallet-Paret, Yorke [M-P&Y2, Chow&M-P&Y2|, arise if one approximates f in (1.1)
by generic nonlinearities. Following |Fie2], we give a detailed outline of this no-symmetry
theory in §3 because it will be basic to our symmetry results.

Including symmetry, the books of Golubitsky, Schaeffer, Stewart [Go&Sch, Go&Sch&:St],

Sattinger {Sat1,2], and Vanderbauwhede [Vanl,5] treat local bifurcations extensively. For a
detailed study of local symmetry-breaking in elliptic equations see [Smo& Wal-3, Van3, Van5].
Concerning local Hopf bifurcation with symmetry we have mentioned {Go&St1]. Rotating
waves were also discussed, e.g., in [Au, Sche, Van2].

Global results are few in number. Globally-minded bifurcation of stationary solutions
with symmetry was achieved by Cerami [Cer}, Cicogna [Cic], and Pospiech [Pos]. They all
essentially pick a subgroup K of I" and proceed along the global result of Rabinowitz [Rab]
within the f-invariant subspace XK. We could imitate this for periodic solutions, because
XK is invariant under the flow (1.1) and the no-symmetry theorems from [Ale&Y1, Chow&M-
P& Y1, Izel, Ize2, Fie2] readily apply. For concentric waves (H = K, cf. §1.2) this approach
is certainly appropriate, but it is not for H > K : all information on H and the action of
6 along the periodic solution will be lost completely. We are aware of only two previous
results on global Hopf bifurcation with symmetry, which address this problem. Both are due
to Alexander & Auchmuty: see [Ale&Aul] for rotating waves in a reaction diffusion system,
and [Ale& Au2| for discrete waves in coupled oscillators.
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However, these results are obtained via an operator setting similar to (1.23). They prescribe
some symmetry (H, K, ©) for the periodic solutions z(t), roughly as in definition 1.1, i.e.

h z(t) = z(t + 6(h)§), forallhe H, (1.30)
but they do not know whether p is the minimal period p of z(t), or just some multiple kp of
it. This way they obtain H > H, but no information on 6. In fact one can only conclude
that ,

O(h) = k- 6(h) (mod 1) (1.31)

for some unknown k. For example, if im6 = H/K is finite then © may be identically 0,
picking k = |H/K|.

We are aiming at results which keep control of @ and, at the same time, remedy the two
drawbacks of the topology approach mentioned earlier. We return to a comparison with the
results of Alexander & Auchmuty in §9.4.

§1.4 Virtual answers

The key to our main results, summarized in theorems 2.9 and 2.10, is our notion of virtual
symmetry. “Mostly” virtual symmetry will coincide with symmetry, cf. definition 1.1. It is
defined as follows.

1.2 Definition : Let z = z(t) be a stationary or a periodic solution of
2(t) = f(0,2(2)) - (1.1)

We call ¢ > 0 a virtual period of z, and (I?,I?,é) a virtual symmetry of z, if there
exists a solution y of the linearized equation

u(t) = D= £(A, z(t)) y(t) (1.32)

such that the pair (z(t), y(t)) has minimal period ¢ and symmetry (H, f(,é) in the sense of
definition 1.1; in particular X
p(h) z(t) = z(t+ 6(k)-q)
p(h) y(t) = y(t+6(k)q)
forallhe H. Similarly, suppose f(A, z)=0and ye kerD; f(), z) is such that the pair (z, y)
lies on a frozen wave H - (z,y) with symmetry (H, K, :hG) in the sense of definition 1.1, i.e.

K= [(zy) = Iz NIy is the isotropy of the pair (z,y). Then we also call (H, K, +6) a
virtual symmetry of z.

(1.33)

Let us comment on this definition. The notion of virtual period is due to Chow, Mallet-
Paret, and Yorke, see [M-P&Y2, Chow&M-P&Y2]. To be precise we should call ¢ a “virtual
period of z with respect to f(A,-)” etc., but for brevity we don’t. Also, A is fixed in definition
1.2 and we might as well omit it.
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Note that the minimal period p > 0 and the symmetry (H, K, ©) of a periodic solution
z(t) are always a virtual period and a virtual symmetry of z, just putting y = 0 or also
y = . If 2 and its scalar multiples are the only periodic solutions of the variational equation
(1.32), then the minimal period is the only virtual period, and the symmetry is the only
virtual symmetry of z. In particular this is the case if the periodic solution z is hyperbolic.
In general z may have several, but finitely many, virtual periods and virtual symmetries. For
stationary solutions zg the above remarks apply analogously. Note however, that a stationary
solution z) has some virtual period and some virtual symmetry iff D, f(X, z¢) has some purely
imaginary nonzero eigenvalues, cf. lemma 4.8. Otherwise (z, y) is necessarily stationary and
its “minimal period” g is not positive. For a thorough discussion of virtual symmetry see §4.

Next we describe at least the general flavor of our main results, theorems 2.9 and 2.10. For
I-equivariant systems (1.1) we first fix any two closed subgroups K¢ < Hy of I'" such that
K, is normal in Hy and Hy/Ky = Z,, is cyclic, n < oco; the notation follows (1.16.a) above.
A priori, these subgroups Hy, Ko need not correspond to any symmetry (H, K,©) of any
periodic solution at all. Next we pick a certain subset d of Z(n), a so-called “binary orbit”, cf.
definition 2.4 and table 2.2. The set d describes some maximal orbit in Z(n) under iterated
multiplication by 2. Then we evaluate changes of unstable dimensions E(A) along stationary
solution branches as A increases from —oo to +00, in reminiscence of conditions like {1.29),
(1.29)’. These changes are counted in certain representation subspaces of Hy/K, = Z,,
acting on X®¢_ These representations are related to the binary orbit d. This information is
condensed in our integer-valued, global equivariant Hopf index

+d
}(Ho.Ko !

cf. definition 2.8.

The principal conclusion is that
Xﬁ:.h’o # 0 = global Hopf bifurcation of periodic so- (1.34)
lutions with virtual symmetry at least
(HOva9)9 KO < K < HO) O cd.

Here we work in the subspace XX0o where the cyclic group Ho/Kj acts canorically, and the
homomorphism  : Hy/ Ko — S is represented by an integer @ € d as in (1.28).

By “global” we mean that there exists a continuum of periodic solutions in 4 x X¥¢ which
is unbounded, or contains arbitrarily large virtual periods, cf. theorem 2.10. By “at least”
we mean that some virtual symmetry (H, K, ©) satisfies

H > Hy and 8|y, =o. (1.35)

Thus, by the isomorphism theorem [Lang, §1.4), Ho/K is isomorphic to a subgroup of H/K
because

Hy/K = Ho/(HonK) = (Ho-K)/K < H/K.

For rotating waves, i.e. for Hy/Kg = Z  and © # 0, there even exists an unbounded
continuum in 4 x X®o. Periods do no enter, except that frozen waves have to be included
in that continuum, cf. theorem 2.9. The theorems hold analogously for analytic semigroups,
cf. corollary 2.13, and for integral equations, cf. the techniques in [Fied]. For examples see
§8, and §9 for further discussion. The discussion includes a proof that local Hopf bifurcation

‘."."\. 4'*-;“ o
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o}
with maximal isotropy (in the sense of Golubitsky & Stewart [Go&Stl1]) always occurs, cf. :'_f
theorem 9.1 in §9.1. :i'
~
Commenting on our main result (1.34) we resume our discussion of virtual symmetry. j
Suppose that z(t) is periodic and the minimal period p is the only virtual period. We repeat, :
3 that this assumption is expected to hold for “most” periodic solutions. As a consequence, ::"
the symmetry (H, K,©) of z extends any virtual symmetry (H, K,0) of z, i.e. N
N
_ . - - ~
H > H, 6|y =6, "'
cf. lemma 4.11. For such solutions z we may thus drop the word “virtual” in the statement 2
. . . -,
(1.34) of our main result. We hasten to add, that this need not be true for virtual symmetries -
associated to non-minimal virtual periods. ﬁ‘:
&
Anyhow, there may exist suitable choices of Hy, Ky and homomorphisms € # 0 such that I
the triple (Hg, K, ©) cannot be extended, for group theoretic reasons. We give examples in
§8. Then at least “at least” can be dropped in (1.34). Note how important it is, here, to ’:
control @ such that it remains nonzero, because @ = 0 extends trivially to any group If > H. ,'.::
5
-~
§1.5 Generic approximations )
e
We obtain our results by generic approximation rather than by topological techniques. In ::::
this context genericity means the following. Fix closed subgroups Ky < H, of the compact -
Lie group I' such that K is normal in Hy and Hy/Ky = Z, is cyclic, n < oo, as before in o
§1.4. Note that H, leaves XX invariant. In fact, the normalizer N(Ky) of K, leaves XHKo
invariant, and Hj is just a subgroup of N(Kj). Still, we choose to ignore any symmetry R
above H,), defining :..;
_\f
7 : the space of f € C*(4 x XKo, XKo) which are equivariant (1.36) ‘_:ﬁ
in the sense of (1.6.b) with respect to the representation of 7
H; on X Ko, R
o
We endow 7 with the topology of uniform convergence on bounded sets. This makes ¥ a _::fj
Baire space |Di, Hirl], i.e. the countable intersection of open dense sets is still dense. o
1.3 Definition : -
A subset G of 7 is called generic, if it contains a countable intersection of open dense :::j
subsets of ¥. The elements of § are also called generic. A property is called generic, if it oy
holds for a generic subset of ¥. -
>
In §§5,10 we will prove that generically, i.e. for f in a generic subset § of 7, only certain o
types of Hopf and secondary bifurcations can occur, cf. theorem 5.11. Just as the classical {::
Kupka - Smale theorem [Kup, Smal], the proof relies on transversality theory or, more *'::
fundamentally, on Sard’s theorem [Ab&Ro]. The complete classification is possible only <
because all local singularities, reflecting just Ho/Ky = Z, equivariance, are completely @
understood. This is the reason why we fix the groups Ko, Hy, a priori, possibly at the :'_',\
expense of ignoring symmetries above Hy. :
3
e
!
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The advantage of the technically somewhat involved genericity result is obvious. We obtain :
a clear geometric picture of all possible global bifurcation diagrams. In particular, we can

keep track of minimal periods and of symmetries (within H/K() at bifurcation points. We T
may even follow branches such that the minimal period jumps discontinuously, e.g. at period

doubling bifurcations. This way we are much more flexible than any pureiy topological .
approach.

As a second step we construct a homotopy invariant index @ for periodic solutions, see

definitions 6.1 and 6.4. This index tells us which branches we may select to find a global
i bifurcating continuum of periodic solutions, in the generic case, cf. theorems 2.6, 2.7, and
§6. Also the index @ carries information which describes the global interaction of the local )
singularities. y

On the generic level, minimal periods and symmetries can still be controlled precisely. The
notion of virtual period and virtual symmetry comes in if we want results for general, not
necessarily generic, nonlinearities f. We have to approximate f by generic g;,

g —f
and get corresponding approximating periodic solutions
z; — I. N

It turns out that the limit of minimal periods and the limit of symmetries need not be a
minimal period and a symmetry of the limiting z. Rather they are a virtual period and a
virtual symmetry of z, cf. corollary 4.6.

For more details we refer the reader to §83, 7. In §3 we give an extensive description of
the genericity approach in the case of no symmetry (I' = {id}). For a concrete, geometric
study of the dynamic effects of a generic approximation on local Hopf bifurcation with I' = .
0O(2), H, = SO(2), Ky = {id} we recommend the interesting paper of v.Gils & Mallet-Paret :
& Takigawa [vG&M-P&Tak|. Of course, our generic approximations are more general but '
much less explicit.

§1.6 A grasshoppers’ guide h

In §1 we give an introduction which is basic to all the rest. It should be read first, and
completely.

¢ v e e

The main results are stated in technically precise form in theorems 2.9 and 2.10. The basic
definitions and assumptions are referenced there, to make these results directly accessible.

For examples one may then skip §§3-7 and 10 looking at §8, instead, and in particular at . by
§8.3. It is also possible to jump directly into the discussion in §9. For open questions, see .
especially (9.7) and (9.13). -

Another non-technical section is §3. We survey generic approximations in the case of no y

symmetry, indicating the analogous symmetry steps which occupy §§5-7 and 10. Our account
of virtual symmetry, §4, can be read independently. But it is used freely in §§5-7 and 10,
which constitute the technical center piece.
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In §5, we develop the complete list of genmeric secondary bifurcations for Hy/Ko = Z,,
equivariant vector fields, ¢f. theorem 5.11 and table 5.2. Proofs are deferred mostly to §10
where some transversality machinery is applied to establish genericity. The generic global
theory is then developed in §6. It includes the index & of periodic solutions, which describes
the global interaction of local singularities. Taking theorem 5.11 for granted, §§6,7 can again
be read pretty much independently of §§5,10. The approximation to nongeneric f is carried
out in §7. Virtnal periods and virtual symmetries enter crucially, there.

For a fairly brief summary of some of the results we also refer to [Fie5]. We wish all
grass-hoppers an enjoyable “hop(f)”.
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§2. Main results

§2.1 Outline

In this section we summarize our main abstract results in a technically precise setting. For
our general philosophy, we refer t, §1, and in particular to §1.4. We recall our distinction
between generic nonlinearities f and general “ nongeneric” f, see §1.5, as well as the notions of
concentric, discrete, rotating, and frozen waves with their symmetries (H, K, ©), cf. definition
1.1. The four arising cases are treated according to table 2.1. For example, our main result
on rotating/frozen waves for nongeneric f is contained in theorem 2.9.

rotating and frozen waves | any waves
f generic, §2.4 theorem 2.6 theorem 2.7
f nongeneric, §2.5 | theorem 2.9 theorem 2.10

Table 2.1: Guide to main results

Before we can state these results, we need a definition of a global equivariant Hopf index ¥¢
and, more basically, of the sets d of integers which keep control of @ along global branches.
The sets d are introduced in §2.3, definition 2.4. For ¥¢ we give separate definitions for
generic f with only cyclic equivariance group G = Z,, n < oo (¥Z : §2.4, definition 2.5)
and for nongeneric f with any compact equivariance group I ()(;:.Ko : §2.5, definition 2.8).
We conclude this section in §2.6 with some preliminary remarks on variants of our main
results, postponing a more thorough discussion to §9.

Throughout §2 we fix two closed subgroups Ko < Hy < I such that K, is a normal
subgroup of Hy, and

Hy/Ky = Z, = G, n<o, (2.1)

is a cyclic factor. We identify G with Hy/Ky. We are interested in global Hopf bifurcation
in XKo, and G acts on XKe, To align the nongeneric case (Ho, Ko) with the generic case G,
notationally, it is convenient to consider

i = f(Az) (2.1)

restricted to the invariant subspace z € XK0 and denote XX again by X. This way, we
have the cyclic group G = Z,, n < 00 acting on X in both the generic and the nongeneric
case. However, we explicitly write the global equivariant Hopf index as ¥ ;’;:‘ Ko below, for
the sake of clarity.
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§2.2 The generic center index

Throughout §2.2-2.4 we fix the following setting. Let G = Z,, n < oo, be a cyclic group
with orthogonal representation p on X = RN . For the nonlinearity f in (1.1) we assume

f e’ (2.2)

where the space 7 was defined in (1.36) and is understood with Hy = G, K¢ = id. This
means that f € C* is G-equivariant with respect to z € X. The highest regularity ct will
not be used before §2.4, entering via §§5,10 into the main generic results. In §2.2-2.3, f € C*
would be sufficient.

We begin to investigate generic local Hopf bifurcation by defining centers and generic
centers. The term “generic” center will be justified later (theorem 5.2): for generic f only
generic centers occur.

2.1 Definition :

Let H be a closed subgroup of G = Z,. We call (Ao,z¢) an H-center if f(Ag,z0) =
0,z0 € XH, and D; f(Xo,z0) bas some purely imaginary nonzero eigenvalues. In other
words® (Ay,Zo) s a stationary solution, invariant under H (at least), with some virtual
period (cf. definition 1.2).

Suppose (Ag, zy) is an H-center satisfying the following three additional conditions (2.3.a —
c)

D, f(Xg, zo) has only one pair {£ if(Xg)} of purely imaginary
eigenvalues and these eigenvalues are simple. (2.3.0)

In particular, 0 is not an eigenvalue and the stationary solutions near (Ag, zg) form a local
C4-branch (A, z(A)) with continued eigenvalues a(A) £ 18(A) of D, f(A, z(A)); of course a, 8
are real, # > 0. The usual transverse crossing condition for local Hopf bifurcation then reads

Dya(Xo) # 0, (2.3.b)

where Dy a()g) is the derivative of a(A) with respect to A at Ayg. These two conditions ensure
that local Hopf bifurcation occurs: there exists a local C3-branch

s = (A(s), z(s,°), p(s)), 0<s<e
of periodic solutions z(s, -) near zg with minimal period p(s) near 2r/8()o) and with (z(s,t)—
zo )/s approaching, for s — 0, an eigenfunction which corresponds to the eigenvalue i8(Xg) of

D, f(Xg, zg); for a reference see e.g. [Cra&Rab2]. This branch contains all periodic solutions
near (Ao, zy). We finally require the curvature condition

D2 A(0) # 0 (2.3.c)

for the bifurcating branch. This condition ensures that periodic solutions are hyperbolic for
|s| small [Cra&Rab2].
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2.2 Definition

We call (Mg, zy) a generic H-center if it is an H-center satisfying the additional conditions
(2.3.a — ¢). We call (Ag,z0) a generic center if it is a generic H-center for some H.

Given an H-center (Ag, zg), the group H acts on the joint generalized eigenspace of purely
imaginary eigenvalues. Given a generic H-center, H acts on the real two-dimensional eigen-
space of { £15()g) }. We may identify this eigenspace with € in such a way that solutions y
of the linearized equation

¥ = Dzf(Ao,z0) ¥

in this eigenspace are given by
y(t) = et flRo)t y(0), (2.4.a)

in complex notation. The action p of H on this eigenspace then takes the form
p(h)y =e*™ y, foralhe H< Z, < R/Z, (2.4.5)

where the integer r (mod n) characterizes p. Note that our choice of f(Ag) > 0 already
determines the complexification of the eigenspace by (2.4.a) and hence r is determined uni-
quely (mod n if n is finite) by (2.4.b) despite of the representations r and —r being (real)
equivalent, cf. [Ser]. It turns out easily (cf. lemma 5.1 below) that the symmetry of the
periodic solutions bifurcating from a generic H-center (Ag, zg) is given by (H, K,©) with

6 =r (mod |H|),

locally, provided that H = G, is the full isotropy of z;. Here © is represented by an integer
as was explained in (1.28).

This way the representations r enter into our definition 2.5 of the global equivariant Hopf
index ¥%. As a first step, we extract the relevant information on a change of stability,
associated to this representation r, by a generic center index §1".

For simplicity, we specialize to the case that (Ag.zg) is a generic G-center, i.e. a generic
H-center with H = G. As before, let (A, z(A)) denote the corresponding local stationary
branch with simple eigenvalues a()) £ i8()), a(Ag) = 0 < B(Xo). The space X& is invariant
under the G-equivariant linearization D; f(Ag,zg). Denote

E®(Xo) : the number of eigenvalues of D, f(Xg, Zo) | xc with positive (2.6)
real part, counting algebraic multiplicity,
r _ J lim,_osign(a(rg + €) — a(ro - €)), forr =,
X'00) = { oy (2.7

where r denotes the representation associated to a(A) £18(A) as in (2.4.b) above. So the local
crossing number x"(Ag) is +1 (resp. -1) if the pair a(A) £ 38()) crosses the imaginary axis
from left to right (resp. from right to left).
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2.3 Definition :
For a generic G-center (), zy) we define the center index by

U ' 0" (Ao, z0) = (-D)E Py (Ay), foro<r <. (2.8)

Note that [IJ" = 0, unless r' = r is the representation of G associated to (Ag, zy).

In case G = {0}, and hence r = 0, this center index reduces to the “no-symmetry” center
index 0 which was introduced by Mallet-Paret & Yorke [M-P&Y1,2]. Recall that a brief
account of the theory without symmetry will be given in §3.

§2.3 Binary orbits

The set d in )"l};((.l.h]. ,)(,'f comes in through 2 (“period doubling”), acting by multiplication
on Z(n)=Z/nZ :

2:Z/nZ - Z/nZ

re— 2r.

(2.9)

This is motivated as follows. At a generic center we have © = r by lemma 5.1 below. But at
secondary bifurcations the symmetries (G, K, ) and (G, K, ©) on the primary and secondary
branch may differ from each other. In fact

6 =6 or 26 (mod n) (2.10)

in the relevant cases; see §5 and especially corollary 5.13, (5.15) for more details. Seen from the
centers, (2.10) describes some global interaction between generic centers with representations
r, r’ differing by a power of 2 (mod n). We now give a formal definition of those subsets
d C Z/nZ for which a global equivariant Hopf-index ¥ will be defined below.

2.4 Definition :
We define a relation ~ on Z(n) = Z/nZ as follows: rj ~ rp :ff there exist nonnegative
integers 71, j2 such that .
'ry = 22m (mod n). (2.11)

The relation ~ is an equivalence relation. The set D(n) denotes the set of equivalence classes.
Equivalence classes d € D(n) are called binary orbits.

So binary orbits d are maximal (forward and backward) orbits under iterates of the mul-
tiplication map (2.9). Below, each choice of d will give rise to a global Hopf index )(,‘f and to
a global result, separately, ¢f. our main results and our summary in §1.4, (1.34). Ther {ore
we digress now to clarify the algebra of D(n) and to compute |D(n)|. We are indebted to A.
Brandis for helpful discussions on this aspect.

Decompose n into primes

v_1 Vo V1 Vi

Py P s

where n' is odd and the p; are distinct primes; py := 2 and v, := v. Correspondingly, we
have a ring isomorphism

¢ Z(n)—oZ(2u)Xz(Pl{')x"'XZ(P:“)
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from Z(n) to the direct product of the Z(p;"), see e.g. |Hasse, ch.4.2]. The projection onto )
Z(p;”) is given by ]

r (mod n) — r (mod p;j). q

Of course, the isomorphism ¢ induces a canonical bijection

D(n) — D(2) x D(p{*) x --- x D(p;*) )

\

Note that D(2") = {Z(2")} consists of a single element, and may thus be omitted. In :
particular :
[D(n)l = |D(n")] = [D(p{")] ... 1D(p*)]. (2.12.0) 3

It remains to determine |D(p"’)! for odd primes p,. Consider v; = 1, first. Obviously
p] i J J

where ord,‘,)(?) denotes the order of 2 in the multiplicative group (Z(p;))* = {1,2,...,p; - 1}.
Any nonzero class d has ord;,J.(Z) elements, in that case. The Artin conjecture claims that .

|D(F, )i attains its lower bound 2 for infinitely many primes; cf. e.g. [Sha, §§32 and 67|.
Using [Hasse, ch.2.5] it is possible to prove that for odd prime numbers p;

vy _ p] - l . d 1-1 -
|D(py)} =1 +§——Wd’.”(2) ged(p}, 5), (2.12.0)
N
where ¢ is chosen such that o
2=l = (p; +1)°, mod p;’, N
and gcd denotes the greatest common divisor. If the prime number p; is such that
Lt
2rm—1 2 modp?,
then formula (2.12.6) simplifies to
v . ;
ID(p,’)| = 1+vwi(p-1)/ord, (2) = 1+v;(ID(p;)l - 1), (2.12.6) q
because ¢ is prime to p;, in that case. If 2Pi~1 = 1 (mod p?) then p? is called Wieferich ::
square. Computer studies have shown that the only Wieferich squares with p; <3- 10° are r
given by 10932 and 35112, f. [Sha, §§39 and 69]. For a relation of Wieferich squares to the
restricted case of Fermat’s Last Theorem see [Sha, §52]. In general, we may only estimate
k o
ID(n) > JT(1+v;-(p; - 1)/0rd;, (2)) 2
7=1 .
k ’
> JJa+v;). ;
i=1 -
o
i
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In particular |D(n)| gets arbitrarily large. We omit proofs of (2.12.5), (2.12.b)' for brevity.
Instead, we refer to table 2.2. Some elements of Z(n) are represented by negative integers
there.

For a concrete example, pick n = 1986 = 2 - 3 - 331. By table 2.2:

|D(1986)| = | D(3)| - |D(331)] = 2 - 12 = 24.

n | D(n)| d € D(n)
1 1 (0)
3 2 (0) (1)
5 2 (0) (%1, £2)
7 3 (0) (1,2,4) (=1, -2, —4)
9 3 (0) (£1, +2, +4) (£3)
11 2 (0) (1, +2,£3, +4, £5)
13 2 (0) (£1,+2, £3, £4, £5,£06)
15 5 (0) (1,2,4,8) (=1, -2, —4, —8) (£3, £6) (+5)
17 3 (0) (%1, £2,+4, +8) (3, £5, £6, £7)
19 2 (0) (21,42, £3, £4, £5, 26, 7, £8, £9)
25 3 (0) (£1,+2,%3, £4, £6,£7, £8,£9, £11, £12) (25, £10)
127 19 (0) (1,2,4,8,16,32,64) etc.
331 12 (0) (21,+2, £4, +8, +16, £31, £32, £62, 64, +75, £83,
4124, +128, £150, £166) etc.
00 00 (0) (2* r)i>0, foranyodd re Z

Table 2.2: Some binary orbits

i
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§2.4 Generic global results
For a given n we now define |[D(n)| possibly different global equivariant Hopf indices )(,',{;
one index for each d € D(n). We strengthen assumption (2.2), f € ¥, requiring genericity:

f € ¥ is a generic, G-equivariant nonlinearity with only a (2.13)
finite number of G-centers.

Here G = Z, < R/Z, n < o0, as before. For our notion of genericity see §1.5 and in
particular definition 1.3.

2.5 Definition :
Let genericity assumption (2.13) hold, and choose any binary orbit d € D(n). Thern the
generic global equivariant Hopf index ¥¢ of the generic vector field f is defined to be

W=, (2.14)

red

where the sum ranges over all G-centers (cf. definition 2.1) and the center index " is defined
for generic G-centers (cf. definitions 2.2 and 2.3). For generic f, all G-centers are generic
G-centers, cf. theorem 5.2 below. For binary orbits see definition 2.4.

Using the terminology of definitions 1.1-1.3, 2.1-2.5 freely, we can now state our two main
results on global G-equivariant generic Hopf bifurcation.

2.6 Theorem :
Let the genericity assumption (2.13) hold for the cyclic group G = Z o = R/Z. Assume
that
¥+ ag#£0 (2.15)

for some nonzero binary orbit d € D(o0) \ {0}.
Then there exists an unbounded continuum Z C 4 x X consisting of generic G-centers,
with representations r € d U (—d), and of rotating and frozen waves with symmetry

(G, K,6) and 6 € d U (~d). (2.16)

2.7 Theorem :
Let the genericity assumption (2.13) hold for the cyclic group G = Z, n being finite or
infinite. Assume that

X # 0 (2.17)

for some binary orbit d € D(n).
Then there exists a global continuum Z C A x X consisting of generic G-centers, with
representations r € d, and of periodic solutions with symmetry

(G,K,8) and O€d. (2.16)'

3
L]

o f € 8 2_8

.."-
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Here global means that
Z is unbounded, or (2.18.a)
Z contains periodic solutions with arbitrarily large minimal period. (2.18.b)

The proof of these two results has to be postponed to §6 because it requires some insight
into generic local bifurcations which will be accumulated in §§5,10. But an account of the
case of no symmetry (i.e. n = 1), at least, will be given in §3 already.

At this stage, let us just compare the two generic results superficially. Theorem 2.7 is ,
reminiscent of the “snakes” result by Mallet-Paret and Yorke [M-P&Y2, theorem 4.1] - ex- '
cept for the control on symmetry , of course. In particular minimal periods may become
unbounded, with Z remaining bounded in 4 x X. For a discussion of this prominent aspect
(2.18.5) of global Hopf bifurcation see §9.4 and the references given there. The assumption
G =Z,d # {0} of theorem 2.6 singles out the case of rotating waves. In that case, theorem
2.7 of course still holds for either d or —d but periods might blow up. And then symmetry
keeps control: the only way that period may blow up for a rotating wave is by decreasing its
speed of rotation down to zero-it becomes a frozen wave, c¢f. §1.2. Theorem 2.7 will not carry
us beyond the frozen wave: at this point the continuum Z already becomes global because
(minimal) period blows up. But theorem 2.6 continues across the frozen wave. Changing A
further, e.g., the frozen wave may start rotating again in the opposite direction. This way,
centers with representations r and —r might interact. Therefore we consider the sum of the -
indices ¥4, and ¥ % in assumption (2.15). Without anticipating the discussion in §9 we note
here already, that rotating waves behave somewhat more like stationary solutions than like ‘
periodic solutions, globally, because period blow-up (2.18.b) can be circumvented.

€ 8 U ¢ v _ 6 &

§2.5 Nongeneric global results

We now turn to the case of general, “nongeneric” f € C1, fixing new assumptions. Recall
that f is assumed to be equivariant with respect to the compact Lie group I', cf. (1.6.a,b),
and Ho/Ko = Z,, n < 00, is a cyclic factor of I', cf. (2.1). We are aiming at periodic
solutions with (virtual) symmetry at least (Hy, K,0), Ko < K < Hy. Such solutions can
bifurcate only from Hy-centers (Ao, Zo), i.e. from centers o € XH0, cf. lemma 4.8. We need
some assumptions on the restricted linearizations

L¥o = Dyf(\z)xk, € L(XKo, xKoy (2.19)
at stationary solutions (A, z) € A x XXo, We require

the set of stationary solutions in 4 x XK¢ consists of a finite (2.20.0)
number of branches

(Mz'(A)edaxXxHo y=o,...T :

which are globally parametrized over A € A, and the eigen-
values of the linearization L,K"(;\) at (A, z/())) are always N
nonzero;

the set of Ho-centers (with respect to LK) is bounded and (2.20.0)
is contained in the union of these stationary branches;

Iy
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the linearization LIKO(’\) depends analytically on A near (2.20.c)
centers.

The restrictive aspect of assumption (2.20.a) is discussed in §9; cf. also remark 2.11. But
assumptions (2.20.b, c) are not particularly aggravating in applications, cf. §8. The analyticity
assumption (2.20.c) will be motivated in §4 (cf. lemma 4.10).

Defining the global equivariant Hopf index ¥ If:. K, for nongeneric f requires some prepara-
tion. Recall that Hy/Ky = Z,, = G acts canonically on XKo, and any L¥o commutes with
this action. Identifying real two-dimensional spaces with €, the real inequivalent irreducible
types p, of real representations of Z, are given in complex notation by

pr(h)z = €™z,  heZ, zeC,

(2.21)
reZ,0<r<n/f2

Of course, the cases r = 0, r = n/2 (for n even) should be read for scalar real z, to be
irreducible. For a background on these easy representations see again [Ser|. Mapping z into 2,
we note that p_, is real equivalent, but not complex equivalent, to p,. These representations

decompose X#¢ uniquely into real representation spaces X;°

xko = @ xko, (2.22)
0<r<n/2

the representation on X,K0 being given by a couple of copies of p,. Again L‘K"(z\) restricts
to each X,I‘ 0

LI = LMlgxo € LXK, XK0).
We denote unstable dimensions Ej(A) and net crossing numbers xj as
E[(X) : the number of eigenvalues of LT(A) with positive (2.23)
real part, counting algebraic multiplicity,
X[ = lm S(E[()) - E[(=))). (2.24)
A—+oo0 2

Note that E(}) is defined consistently with (2.6) since X6 = Xg"’, in the setting of §2.1.
The net crossing number x| counts how many conjugate complex pairs of eigenvalues of
L}(A) cross the imaginary axis from left to right as A sweeps through R. By assumptions
(2.20.4,b), x7 is a well-defined finite integer.

Comparing the net crossing numbers xj from (2.24) with the local crossing numbers x"(A¢)
from (2.7), a slight discrepancy arises which involves real versus complex representations.
Suppose we are in a generic case, i.e. only generic G-centers, G = Hy/Ky, occur in XKo
along our branches (A, z/(A)). Then

i = ) X + ) x"(N) (2.25)

branch { branch {

where the summation runs over all centers (Ao, z'(Ao)) on the branch (A, z!(})). The reason
is that we had to take real representations for the net crossing number xj, while for the
local crossing numbers x"(Ag) a natural complexification was selected by the linear flow on
the purely imaginary eigenspace, cf. (2.4.a,b). This natural complexification allowed us to
distinguish between x" and x~', locally, in contrast to the nongeneric case.

We can now define the global equivariant Hopf-index for nongeneric f.
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2.8 Definition : _

Let f € C! be I'equivariant (cf. (1.6.a,b)), Ho/Ko = Z,, a cyclic factor of I' (cf. (2.1)),
and assume that (2.20.a,b) hold. Choose any binary orbit d € D(n) (cf. definition 2.4 and
table 2.2). Then the global equivariant Hopf-index Nl:;:,i.h’o is defined as

i
0
Mok, = 2o > (F)EQely (2.26)
=0 redu(-d)

where E,O(,\), x[ are defined as in (2.23), (2.24), and (—I)Elo('\") is independent of the choice
of g € 4 = R by assumption (2.20.a).

In the setting of §2.1, with Ho/Ko = G = Z,, the generic index ¥ (definition 2.5) on
XXKo relates to the nongeneric index N;:.Ko (definition 2.8) by

-d
Natw, = ¥+ ¥, (2.27)

due to (2.25), if we approximate f by a generic G-equivariant nonlinearity on XKo, Such a
definition by generic approximation, which is common place e.g. in Brouwer degree theory
[Dei, Chow&:Ha] and which relates to the question of homotopy invariance of the index ¥, is

discussed more in-depth in §9.4. We can now state our main results for nongeneric f, at last,
recurring to the terminology of definitions 1.1, 1.2, 2.1, 2.4 and 2.8.

2.9 Theorem :

Let f € C! be I-equivariant as.in (1.1), (1.6.a,8), Ho/Ky = Z = R/Z a cyclic
factor of I" as in (2.1) and assume that (2.20.a,%) hold. Choose any nonzero binary orbit
d € D(oo) \ {0}. Finally, assume that the corresponding global equivariant Hopf index
N!?((.I,K(.’ defined in (2.26), satisfies

¥ilg, # O (2.28)

Then there exists an unbounded continuum C C A x XKo consisting of Hg-centers, of
rotating waves, and possibly of frozen waves, with virtual symmetry at least

(Ho,K,0), and 6 € dU(~d) (2.29)

for each element of C.
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2.10 Theorem :

Let f € C! be I'-equivariant as in (1.1), (1.6.a,b), Hy/Ko = Z, a finite or infinite cyclic
factor of I' as in (2.1), and assume that (2.20.a — ¢) hold. Choose any binary orbit d € D(n).
Finally, assume that

¥ilk, # O (2.25)

Then there exists a global continuum ¢ C 4 x X¥o consisting of Hy-centers and of periodic
solutions, with virtual symmetry at least

(Hp,K,0), and O €du(-d) (2 29)
for each element of C. The continuum C contains both (uncountably many) periodic solutions

and (at least) one center on one of the stationary branches (A, z!(A)).
Here global means that

C is unbounded, or (2.30.a)

C contains periodic solutions with arbitrarily large virtual periods. (2.30.6)

§2.6 Variants

We briefly discuss some variants of the preceding results which are useful in applications,
see §8.

2.11 Remark :

The nondegeneracy assumption (2.20.a) on the global stationary branches (A, zf(A)) can
be quite obnoxious, failing in applications. Sometimes it is more convenient to replace A x X
by an open subset ¥ C A4 x X, and work in ¥, Y N (4 x X¥0), etc., instead. Then theorems
2.9, 2.10 hold true if we replace the requirement for C C A x X to be unbounded by

C C Y is unbounded, or (2.30.a)
the closure of C intersects the boundary of Y,

in theorem 2.10 and, analogously, in theorem 2.9. For example, this allows us to take
Y = (4 x X)\{ all annoying stationary solutions}.
Or, if the set of Ho-centers is unbounded, contrary to assumption (2.20.5), we may take
Y = (-¢e)xX

and let ¢ become large. Or we may be interested in positive solutions z > 0 (component-wise)
and define Y accordingly. Or we may restrict attention to A > 0, etc., etc.
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2.12 Remark :
In §8 we are going to apply theorems 2.9, 2.10 in an analytic semigroup setting
diz = A(M)z+ f(A 2), (2.31)
cf. [Hen] for a technical background. Specifically, we assume the following.

A(}) is a C*-family of sectorial operators on a real Hilbert (2.32.0)
space X, with dense domain D(A())) which is independent

of A € R, and with compact resolvent. Further assume that

X, := D(A(X)¥), equipped with the graph norm of A(A)¥,

is independent of w for some w € [0, 1).

Here differentiability is understood in the uniform operator topology £(D(A(0)), X), where
D(A(0)) is equipped with the graph norm of A(0). For f we require
fect4x X,,X). (2.32.4)
The compact Lie group I' comes in via its orthogonal representation on X. We assume
f and A()) are equivariant with respect to I, i.e. (2.32.c)
fz) = (A z),
A(M)yz = 14(A)X,
forallye I, A € A, and z € X, resp. z € D(A(0)).
In case Hy/Ko = Z, = R/Z, we require for the canonical representation p of Hy/ K¢ on
X% in addition that
R:= Fp(h)h=o : XunXKo_ xKo (2.32.d)
is a bounded operator.
To express genericity in this framework, we define
7 : the set of f € C*(4 x (X, N X¥0), XKo) which satisfy
f(A,p(R)z) = p(h)f(A, Z) (2.33)

forall h € Hyo/Ko, A € A, and z € X, N XKo,

Again, we endow ¥ with the topology of uniform convergence on bounded sets. In this
topology, 7 is a Baire space: countable intersections of open dense sets are still dense; cf.
e.g. [Di, theorem 12.16.1]. Thus it makes sense to speak of generic subsets of #. By
compactness of the resolvent, the local semiflow defined by (2.31) is compact for any small
positive time. Indicating any necessary modifications, we will model our proofs of the “finite-
dimensional” theorems 2.6, 2.7, 2.9, 2.10 to fit to this infinite-dimensional case. With the
obvious modification

L¥o = (A()) + D:f(),3))|xxo (2.19)’

entering into the definitions 2.5 and 2.8 of the global equivariant Hopf index ¥ we then arrive
at

2.13 Corollary :
Under the additional assumptions (2.32.a ~ d), theorems 2.6, 2.7, 2.9, 2.10 still hold true
for analytic semigroups (2.31).
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s3 No symmetry — a survey

§3.1 Outline

Most of this chapter is intentionally didactic in character. We explain our basic concepts
of proof on a purely intuitive level and in the simplest possible case: that of no symmetry,
I' = {id}. For a technically complete treatment of this case see [Al&M-P&Y1,2, Chow&M-P,
Chow&M-P& Y2, Fie2, M-P&Y1,2]. There are no lemma-lemma-lemma-theorem strings in
this chapter. Instead we refer the reader to the appropriate places in §§4-7 and 10 where the
respective arguments are carried out in the symmetry context. We only give some precise
definitions, for later reference.

This chapter is organized as follows. In §3.2 we give a very brief account of global stationary
bifurcation in one parameter. We base this account on generic approximations, to relate it to
our approach. In §3.3 we describe the generic secondary bifurcations for periodic solutions:
turn and flip doubling. Introducing an orbit index @ in the case of no symmetry we finally
sketch a proof of the corresponding versions of theorem 2.7, in §3.4, and of theorem 2.10, in
£3.5.

§3.2 Global stationary bifurcation

The classical global bifurcation result for stationary solutions (no symmetry) is due to
Rabinowitz [Rab]. We describe it in a special setting which is convenient for us. We want to
solve

2(A,z}) =0 (3.1)

say for A€ A= Randz€ X = RN, | C2(A x X, X). Assume that there is a trivial -

branch of solutions
z(A,0) = 0, (3.2)

and that, for |A| large, all eigenvalues of the linearization L(\) := D,z(\,0) are nonzero.
The Brouwer degree at (1, 0), [Chow&Ha, Dei], is then given by

deg(),0) = sgn detL(\) = (-1)V . (=1)EXN) (3.3)

where E()) is the number of eigenvalues of L()) with positive real part, similarly to our
definition (2.23) of E"()). Let us finally assume that

deg(X,0) # deg(—A,0), forlarge A > 0. (3.4)
In terms of crossing numbers (see (2.24), (2.26), (2.28)) this means that

Jlim (E(3) - E(=4)) s odd. (3.5)

As in the proof of the Rabinowitz theorem [Rab, theorem 1.3] we may then conclude that
a global, i.e. unbounded, continuum of zeros (A, z) of z bifurcates from the trivial branch.
This result also follows from Ize [Izel, p.77].
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Let us sketch an idea of proof, taken from {Chowd& Ha, §5.7], which indicates the method we N,
have in mind for the case of periodic solutions. As a start, let us assume that z is “generic”. N
Here, “genericity” will only mean that 0 is a regular value of z, i.e. (), () = 0 implies that pe,
the total derivative .
Dz (A, z) is surjective. N
o~
By Sard’s theorem [Ab&Ro] “genericity” holds, if not for # itself, then at least for some N
perturbations ~
g(), ) + ¢ (3.6) ™
with arbitrarily small constant vectors ;. Note that the trivial branch may get perturbed, .
or even get disconnected, by such a perturbation. A
In case z is “generic”, the solution set z71(0) C A x X is an embedded one-dimensional
C*-manifold, i.e. a locally finite union of C2-curves i,
= (AM(s), z(s)) R
Y
which are parametrized by arclength. Let us assign names to points on such curves, rigorously. v
: b9
~ \l
}I
3.1 Definition : o
We call a zero (Ay, z) of z z-regular if all eigenvalues of the linearization D;z(Aq, z() of a'-
z with respect to z are nonzero. ;
'
We call a zero (Ay,z0) = (A(sy), z(s¢)) of 2 a turn, if the following conditions (3.7.a — ¢) -~
hold. .
Dz()p, z¢) is surjective, but o
. . (3.7.a)
D;z2()g,zo) has a simple eigenvalue py = 0. "
In particular, the local stationary branch (A(s), z(s)) through (Ao, zy) = (A(s0), z(sg)) satis- :
fies D,A(sg) = 0 and D,z(sy) # O is an eigenvector of ug = 0. Let u(s) denote the local 1
continuation of ug to an eigenvalue of D,2(A(s), z(s)). We require a transversality condition .
D,u(so) # 0. (3.7.b) _;-
This condition turns out to be equivalent to the curvature condition ~
DZ)(s0) # 0. (3.7.c) -
A turn is drawn in fig. 3.1 below. As a variant we define a turn (A, ) of fixed points of a :E
map 2 € C3(4 x X, X) for later reference. We just require (Ag, zy) to be a turn for 'S
2(),z) ;= 2(\z) -1z, i
and assume in addition
the spectrum of D;2Z(Ag,zp) on the unit circle consists of (3.7.a)' "
only the simple eigenvalue 0. .
A
A
’.
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Restricting our class of “generic” g even further, one can conclude that for generic z the
solution set consists only of z-regular points and (isolated) turns. From the definition (3.3)
of Brouwer degree deg it is obvious that

deg(A(s), z(s)) € {£1}

stays invariant near z-regular points and, by (3.7.5), changes sign at a turn. In [Chow& Ha,
§2.11] this observation is used to prove homotopy invariance of deg under the homotopy
parameter A.

We can now prove the Rabinowitz result, for generic z. Just orient the solution curves
(A(s), z(s)) at z-regular points such that

A-deg increases (3.8)

along the oriented curves. By the above, we may extend this orientation consistently through
turns. By assumption (3.4), the curve segments (A, 0) for |A| large have opposite orientations
for A positive resp. A negative. Thus they belong to two different oriented curves. But
neither of these curves can remain bounded as we follow it inwards from |A| = oco. Indeed,
because they are embedded curves without boundary, they cannot pile up in any bounded
region. Thus each of these curves extends globally, away from 4 x {0}. Passing to a general,
nongeneric limit with these curves, one can then conclude existence of a global continuum
(not necessarily a curve) bifurcating from 4 x {0}. This is the Rabinowitz result.

The “usual” proof uses homotopy invariance of Brouwer degree directly. In constrast, we
introduce the generic (i.e. nondegenerate) version (3.3) of Brouwer degree above in an ad-hoc
fashion to orient our generic curves. Simultaneously, we can conclude homotopy invariance
of Brouwer degree from its homotopy invariance at turns, as is done in [Chow&Ha, §2.11].
Of course, homotopy invariance of Brouwer degree can be established by other means. For
example we mention the algebraic topology approach [Do, Dug|. For periodic solutions we
favor the “generic” approach because it allows us to select curves along which the minimal
period jumps discontinuously, if we prefer. Alternatively one may also reconstruct the more
topologically minded Fuller degree for periodic orbits this way, see {Ful, Chow&M-P].

§3.3 Generic local bifurcations

We begin to describe the generic bifurcations of periodic solutions in the case of no symme-
try. Recall that generic Hopf bifurcation was specified in (2.3.a — ¢) already; these conditions
specialize verbatim to the case of no symmetry.

To treat secondary bifurcations of periodic solutions into other periodic solutions, we
employ the usual concept of a Poincaré section with an associated Poincaré map, see e.g.
[Ab&Mars, ch. 7.1]. Let (Ag, zo) be on a periodic solution zg(t) of (1.1). Then the Poincaré
section § = {z9} + S’ is a local affine hyperplane through zg of codimension 1 in X, such
that o points out of S (e.g. S := {zo} + (Zo}). The Poincaré map IT is defined on a suffi-
ciently small neighborhood of z¢ in S: it maps z into the point where the positive trajectory
z(t), t > 0, through z first hits S again. We write, a bit sloppily,

(X, ): Sioc = S. (3.9)
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Obviously, bifurcation of periodic solutions (A, z(t)) from (Ay, zo(t)) is equivalent to bifurca-
tion of fixed points z of some iterate

[T,

from (Ag, zg). Such bifurcations are indicated by the linearization of IT. The eigenvalues of
D, 11 (Ao, z0)

are called (nontrivial) Floquet multipliers of (Ag, zg).

3.2 Definition :

Let IT(Xo,z¢) = zg. Then (Ag,zo) is called type O if no real or complex root of unity is
a (nontrivial) Floquet multiplier. We call (Ag,z¢) a turn if it is a turn of the map Z := JI.
We call (Mg, zg) a flip doubling if it is a flip of the map Z := IT.

Replacing S by X, here (Ao, z¢) is called a flip of an abstract map £ € C3(A x X, X) if
Z(Ap, z0) = z¢ and conditions (3.10.a — d) below hold. We do not require Z to be a Poincaré
map, for later convenience, cf. §5. In detail, we assume

D, Z(Ag, zy) has a simple eigenvalue u(Ag) = —1, with ei- (3.10.2)
genvector y,, and this is the only eigenvalue on the unit
circle.

In particular, there is a unique local C3-branch z = z, of fixed points of Z(),-) through
Iy = I,,. For the corresponding continuation u(A) of the eigenvalue py = u(Ag) = =1 we
again impose the transversality condition

Dyu(dg) #0. (3.10.b)

Then [Cra&Rabl] implies a pitchfork-bifurcation of fixed points of [Z(}, -)]® at (g, zo). The
unique bifurcating local C%-branch

(’\(s), z(s)) € Aloc x Sloca lsl <e¢
can be C2-parametrized such that

(A(0),z(0)) = (X0, Z0)
D,)(0) =0, D,z(0) = yo (3.10.c)
A(s) = A(=s), Z(A(s), z(s)) = z(~s).

We finally require the curvature condition (which does not follow from (3.10.5), this time)

D?)(0) # 0. (3.10.d)
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Fig. 3.1 A turn Fig. 3.2 A flip

A flip is depicted in fig. 3.2.

Poincaré /Poi, ch. XXXTI' discusses the turn bifurcation in the context of periodically forced
Hamiltonian systems with one degree of freedom. Note that a turn is called “type I” and a
flip doubling is “type II” in [M-P&Y2]. Below we will encounter sufficiently many “types”
to prefer a more descriptive terminology. For completeness we also note that a turn is called
saddle-node bifurcation if one half of the branch is stable, see [Ab&Mars, Chow&Ha, Gu&Ho,
Spal and a flip doubling is called period doubling in {Gu&Ho, Spa] and also flip in {Gu&Ho].

The important thing about generic Hopf bifurcations, turns and flip doublings is that, for
generic one-parameter f, they exhaust the zoo of bifurcations which involve only stationary
and periodic solutions. All other periodic solutions are then of type 0. This result extends the
Kupka-Smale theorem (the no-parameter case) and can be found in |Bru] for diffeomorphisms
(like IT), in [All&M-P&Y2| and [Med| for ODEs, and in [Fie2| for analytic semigroups. Note
that type O solutions are not necessarily hyperbolic, so bifurcations e.g. to invariant 2-tori
may well occur. But they do not figure as bifurcations to periodic solutions, in our context.
So these bifurcations are ignored. Including symmetry enlarges our list of generic secondary
bifurcations, because various symmetry-breaking effects have to be included. This list is
developed in §5 and summarized in theorem 5.11; see also table 5.2.

It is rather cumbersome to establish this complete list of generic secondary bifurcations,
even in the case of no symmetry. The basic idea, however, is simple . Linearizing Poincaré
maps along a branch of periodic solutions we obtain generic one-parameter families, i.e.
curves, of matrices. Given a complex root of unity ¢ € {+1, —1}, we may certainly perturb
this curve such that the associated curve of eigenvalues avoids ¢: the (real) codimension of
¢in € is 2. But if { € {+1,-1}, then we cannot avoid ¢ as an eigenvalue. Indeed, we
can pot perturb a curve of (simple) real eigenvalues into the complex region, and the real
codimension of ¢ in R is only 1. Still we may assume that eigenvalues, i.e. Floquet multipliers,
cross ¢ transversely giving rise to turns or flip doublings, respectively. A technically correct
implementation of this idea relies on transversality theory, developed e.g. in [Ab&Ro], which
boils down to Sard’s theorem. Complications arise already for the Kupka-Smale theorem:
the application of transversality theory requires a reduction to periodic solutions of certain
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L

p0!2p0,3p0,4p0,. p0’2p0 v3p0,4p0,..

Fig 3.0 The -jug-handle” of Alligood & Mallet-Paret & Yorke |[All&M-P&Y1].

minimal periods. For equivariant problems, we defer this whole topic of transversality to
§10.

§3.4 Global generic Hopf bifurcation

With the list of generic local bifurcations at hand we would now like to detect a global
branch of periodic solutions in the situation of theorem 2.7, but without symmetry, i.e.
G = {0}, n = 1. For a reference see [M-P&Y1,2]. Similarly to the stationary case we would
like to follow branches of periodic solutions, orienting them globally. Obviously we need some
“degree”, some “index”: ¢. But a problem immediately arises. At a flip doubling, three arcs
of periodic solutions join together, fig. 3.2. Following a global path of periodic solutions
beyond a flip doubling we have to decide which way to go. The index & should tell that.
But even worse, we might loop back onto a previously followed path at a flip doubling, as
an example of Alligood & Mallet-Paret & Yorke [All&M-P& Y1)} with z € R* shows, cf. fig.
3.3. The classical “resolution” of this difficulty is to consider global Hopf bifurcation as a
two parameter problem, including period p as an additional parameter [Ful, Ale&Y, Izelj;
for an equivalent setting see (1.23) and §1.3. Note that the “jug-handle”, fig. 3.3, provides
an unbounded continuum in (p, A, z) beca.se the period p is not required to be the minimal
period. Indeed, suppose we enter the Joop from the left with p = py being the minimal
period. Tracing out the loop counter-clockwise, the period p gradually increases to 2pg as
we return to the flip doubling point A. By continuity of p, we have to view A as a periodic
solution with (nonminimal) period 2p. Following the same loop repeatedly, we arrive at A
with (nonminimal) period 4pg, 8pp and so on. Thus periods become arbitrarily large though
the example looks perfectly bounded at first sight. Because primary and secondary periodic
solutions near a flip doubling are linked in R3, the lowest possible dimension for such an
example is z € R*; but see also [Ale&Y2].
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The orbit-index @, constructed by Mallet-Paret & Yorke [M-P&Y2], resolves the “jug-
handle” difficulty as follows. Let 0% resp. 0~ denote the number of real Floquet-multipliers
of a type 0 periodic solution (A, z) in (1, 00) resp. (—o00, —1), counting algebraic multiplicities.
Then

P\, 1) = {(-—l)"+ if o~ s even, (3.11)
0 if o7 isodd.

is called the orbit index of (A, z). In other words,

o = (07" 4 (-t (3.11)
The index @ is in fact homotopy invariant. Choosing arcs with ¢ # 0 then tells us which
way to go at a flip doubling. Indeed, ¢~ changes parity along the primary branch at a flip
doubling (A, zp), by definition 3.2, (3.10.6). Thus @ # 0 to one side of (Ay, zp), and ¢ =0
to the other side, on the primary branch. By homotopy invariance, @ # 0 on the secondary
branch. Consequently, branches with ¢ # 0 extend to a unique path through (g, z¢).

Following branches with @ # 0, we will never enter a loop as in fig. 3.3, and get trapped.
Indeed @ # 0 on the secondary branch, by the above. By definition 3.2, or directly by
homotopy invariance, ¢ changes sign at the turn but stays nonzero. Thus the whole loop
consists of solutions with @ # 0 ({except for the turn and the flip doubling). Consequently,
@ = 0 on the remaining half of the primary branch and it is impossible to get trapped in the
loop entering it with @ # 0 from outside.

For discrete cyclic symmetries, the orbit index @ is introduced in definition 6.1. The proof
of homotopy invariance, proposition 6.2, covers a substantial part of §6.

For global bifurcation of stationary solutions we assumed some odd net crossing (a change
of degree) in (3.5). The analogous assumption for periodic solutions without symmetry is
given by (2.14), (2.17)

¥ = > b # o (3.12)
centers
We omit the binary orbit d = (0), n = 1, and r = 0 in this case. Recall definitions 2.2 and 2.3
of the center-index flof a generic center (Ao, zo) with bifurcating local branch (A(s), z(s, -)) of
periodic solutions. By exchange of stability, ) of (Ao, Zo) and @ of (A(s), z(s,-)) are related
by
& = [ sgn(A(s) —Ag), forsmalls, (3.13)

cf. [M-P&Y?2, fig. 7.1]. The symmetry analogue is proved in proposition 6.3.

With these preparations in mind we can now sketch a proof of our generic theorem 2.7 in
the case of no symmetry G = {0}, n = 1. Analogously to the stationary case we may orient
(C0-)curves (A(s), z(s, -)) of periodic solutions of type 0 with @ # 0, globally, such that

A-Q increases (3.14)

along the oriented curve. By homotopy invariance of ¢, we may extend this orientation consi-
stently through turns and flip doublings. Maximal oriented curves which begin or terminate
at some center are called “snakes” in [M-P&Y2]. Let § C 4 x X denote a snake which is
bounded together with its minimal period. Then § originates at some center (Ao, zg) and,
by maximality and boundedness, terminates at some other center (A, z{) if we follow the

...... . L S N S A o S R S U I R N S SR SIS N T AT A St NP
P AL P S AT AT "d""-\' - " AT > \'.' \' \ e AT AT TN N tete

,"-,-.'.'. -. TYNY I VA

LW o SN SN I B R

AR AR

1T, 8, YA,

. 0. s
.



Y W wEaS——

- e

C '.""-'l(ﬁf',/-.'):l:-l

WUR L U UM UWAR A U U UX L ‘gt W o Bta-gia hia” “EV o @%a A¥a aln %0 A% B2 AV §%a A’ " aVe ' a8 ‘2 8'aLb

- 35 -

orientation of §. By exchange of stability (3.13), the center-indices Presp. B’ at (A, z¢)
resp. (A}, z}) satisfy
h=+1, ¢ =-1L (3.15)

Note that i1+ i’ = 0. Conversely, because ¥ = ) (# 0 by assumption (3.12), there exists
a snake Z which is unbounded or contains arbitrarily large minimal periods. This proves
theorem 2.7 in the case of no symmetry. With all the ingredients at hand, the proof of
theorem 2.7 in the case G = R/Z will actually be quite similar, see §6.6.

§3.5 Global nongeneric Hopf bifurcation

It remains to comment on the general nongeneric result, theorem 2.10, in the case of no
symmetry I' = Hy = Ky = {id}. Brushing subtleties aside, for a moment, we approximate
the nonlinearity f by generic nonlinearities

g9i— f- (3'16)

By assumption (2.28) we know ¥ # 0 for f, which implies ¥ # 0 for the g;. This yields global
snakes Z; for g; and we may put
C:= "lim"Z, (3.17)
1

to obtain a global continuum C of periodic solution for f, as required in theorem 2.10.

Subtleties arise as follows. We have to make precise the “lim” in (3.17) and ensure C is
actually a continuum. This will be based on lemima 7.1 below, following [Why]. Then ¢ will
indeed consist of (stationary and) periodic solutions for f. But note that the minimal period
of the limit might be only a fraction of the limit of minimal periods. In particular: why
should C be global with respect to periods, even if the Z; are? This is the place where the
notion of virtual period comes in. Indeed, the limit of minimal period is still a virtual period
of the limit [M-P&Y2, Chow&M-P&Y2]. Thus we will have arbitrarily large virtual periods
of C if the Z; stay uniformly bounded and have arbitrarily large minimal periods. On the
other hand, if the Z; do not stay uniformly bounded then ¢ will be unbounded. In any case,
C is then global. Is it, really? In principle, the Z; could collapse to a continuum C which
consists only of centers while virtual periods on C are unbounded. As in [Fiel], it requires
analyticity assumption (2.20.c) and a quite careful construction of the Z;, including continua
Z! C Z of uniformly large virtual periods, to overcome this last subtlety.

Including symmetry complicates the situation by the notion of virtual symmetry. The de-
tails fill §4. The approximation problems are covered in §7. Note however that the appearance
of rotating and frozen waves in theorems 2.6 and 2.9 is special to SO(2)-symmetry and has
no counterpart in systems without symmetry. Curiously, these rotating/frozen waves appear
as a hybrid between the global results for stationary resp. for periodic solutions discussed
above. Indeed turns and flip doublings occur, generically (theorem §.11). But we may ex-
tract bifurcating continua (of rotating/frozen waves) which are unbounded in 4 x XX¢,
without caring about minimal or virtual periods too much. This is reminiscent of the global
one-parameter result of Rabinowitz. With this apparent synthesis we conclude our didactic
excursion into a world without symmetry.
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§4. Virtual symmetry

§4.1 Outline

The notion of virtual symmetry, which we discuss in this section, is central to the idea
of proving global results by (generic) approximation f; — f. Any approximation faces the
following problem. Let £;(-) be a sequence of periodic solutions, with minimal period p; > 0
rescaled to 1 and with symmetry (Hoo, Koo, Oco) independent of 1. The §; thus satisfy

F(fi, 2, &iypi) = ‘“;_:féi‘*'fi('\ivfi) = 0. (4.1)

Assume f; — f, A; = A, & — £, pi — Poo in the appropriate spaces. Then £ is itself
a periodic or stationary solution, but its minimal period p need not be ps, and even if
P = Poo then the symmetry (H, K, ©) need not be given by (Hoo, Koo, Bc0). In general, po
is only some multiple of p, and even if poo = p then oo 1= HEZ% is only a subgroup of
X := H? < I x S!. In other words, minimal period and symmetry are not stable under
limits.

In §3.5 we have noted that virtual periods were introduced by Chow, Mallet-Paret, and
Yorke [M-P&Y2, Chow&M-P&Y2; to remedy this problem, as far as minimal periods are
concerned. Below, we employ the notion of virtual symmetry to take care of the symmetry
aspect as well. In fact, it turns out that the whole idea of virtual period can be subsumed
under the symmetry point of view with no additional effort. In §4.2 we give a general
definition of virtual isotropy which looks rather “stationary”, and then state stability under
limits in proposition 4.3. In §4.3 we observe that virtual symmetries and virtual periods are a
special case of virtual isotropies. As a consequence virtual symmetries and virtual periods for
periodic solutions are well-behaved under limits, cf. corollary 4.3. We conclude this section
with three lemmas which involve virtual periods and virtual symmetries and which are stated
for later reference.

§4.2 Virtual isotropy

We develop our concept of virtual isotropy in reasonable generality though we apply it
only in the special setting (4.1), later. Therefore we deviate from the established notation
to formulate definition 4.1 and proposition 4.3. Let =, =' be Banach spaces with continuous
actions of the group I on 5 resp. 5'. Here ' does not denote the dual space of . Consider
a I'-equivariant C'-map

F: 5% (4.2)

such that
F¢) = o (4.3.0)

for some ¢ € Z, and such that DF(¢) is Fredholm [Kato].
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4.1 Definition : :
Let F(£) = 0 as above. A subgroup I of I' is called a virtual isotropy of { with respect
to F if there exist elements y!, 32, - of Z such that

DF(¢) Y = 0, for all 3, and (4.3.6)
12y = X (4.3.¢)

Here f(f_yn'yz._.,) = fé N (ﬂjzx f’ ;) denotes the isotropy of (¢,y!,y2, -} with respect to

the obvious diagonal action of I.

4.2 Remark : ) ,
Certainly X' < I, for any virtual isotropy X. Picking y? = 0 for all j we see that the

isotropy fé of £ is always a virtual isotropy of €. But in general, it may depend on F whether
some given L' < I'¢ is called a virtual symmetry or not. If I'; acts trivially on ker DF(),
then ¥ = f€ is the only virtual isotropy of €. This holds in particular if ker DF(£) = {0}.
If, on the other hand, fE does not leave each element of ker DF(£) fixed then other virtual

isotropies besides f"f occur as well. Therefore we have to keep F' in mind whenever we speak
of virtual isotropy. But for brevity, we will not mention F explicitly whenever the context is
definitive.

Infinitely many y’ are used in our definition above. Because DF(¢) is Fredholm, finitely
many would actually be sufficient: we may put y/ = 0 for § > dim ker DF(¢). Indeed, we
may renumber the y? such that

span{y’ [1 <j <oc} = span{y’ |1 <] <dim ker DF(£)}.

But then
dim ker DF(§)

o - ~
ﬂ’"y:‘ = ﬂ r

j:] j:l

proving our claim above.

4.3 Proposition :
Let " be a compact Lie group, and F; a sequence of I- -equivariant C!-maps from = to =’
with F;(£;) = 0. Assume that

fi_‘fooa
I’}_‘Foo:

C!-uniformly on some closed neighborhood V of ¢o, and that
DFoo(§oo)

is a linear Fredholm operator [Kato]. Finally assume

the fixed subgroup X of I is a virtual isotropy of & with (4.4)
respect to F;, for each 1.

Then Lo, is a virtual isotropy of £, with respect to Fo.
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Proof :

The proof consists of a careful application of standard Ljapunov-Schmidt reduction, and
proceeds along the lines of [Pos, theorem 3.2,1]. There, the case f’iw =T 50 = T, was
considered in a slightly different technical setting. We are indebted to Christoph Pospiech
for suggesting this approach. :

Let P, Q denote projections onto ker DFo(€éco), im DFeo(€oo), respectively. Because I’
is assumed compact , P and @ can be taken f‘foo-equivariant (cf. e.g. [Vanl]). Choose
y},y?, ... € ker DF(§;) such that

T,

(&iylw?.) < Lo

To simplify notation define

€ =P~ €w) £ 1= (id ~ P)(& — €co)-
The following two claims will be proved below for large enough 1:
Tty = Teonly, (4.5)
FE'. N vaj = Ign I‘y{ ) for all ;. (4.6)

s

Using (4.5) and (4.6), the proof can be completed as follows. Obviously, I-‘fw > Yoo by
continuity and because 1-“& > Y. This implies

Flwer Pyt pyzy = LD (ﬂ Ppy{) =
izl

= Tg,n (ﬂ(ffimf‘l’y{)) =

j21

= I¢,nlgn Iyl =
i21

By construction, Eil and all Py{ are in ker DFo(€00). Thus Lo, is a virtual isotropy of oo,
a nd it remains only to prove (4.5) and (4.6).
To prove (4.5) we define the evaluation map

v: CcYV,5)x Yp— Q=
W(F, €1, €2) := QF(fco + €1 + €7)

where €1 := P(£ - £), €2 = (td - P)(€ - €c0), and Vg := V — €4 is V shifted to the origin.
By construction, ¥ is C}, ¢ -equivariant in (€1, €2),

w(Fm,O, 0) = 0’ and
Dep¥(Fe,0,0):  (id-P)Z — QF

e 2 R

. @ e~

.
v

¥

o

.....................
-----

----------



is an isomorphism. By the implicit function theorem, any solution of
V(F,¢' 6% =0

has the form
¢ = (R ¢,

for F near Fe, if 7 is chosen small enough. By uniqueness, ¢2(F,) is fgm-equivariant.
Because f? = £2(F;, .fll) we thus obtain

Femnrei = Pfooﬂr€'1+£3 = I‘fmﬂfez = I“(Emf‘x,

and (4.5) is proved. ' :
To prove (4.6) we note that DF;(£;)y] = 0 and hence

QDF(&)(id - Pyy] = - QDF(&)Py].
This equation can be solved for (id — P)y;'.". Indeed
QDF(&):  (d-P)E — QF,

being a small perturbation of QDF(¢x), is an isomorphism for large enough :. Thus
(id — P)y] depends fei-equivariantly on Py] and (4.6) follows as (4.5) did. This completes
the proof of proposition 4.3.0

4.4 Remark :
Below we will apply proposition 4.3 in the special case that

is the isotropy of §; itself. Putting y{ = 0 for all 7,5 in the proof of proposition 4.3, and in
particular in (4.7), it is then clear that for ¢ large enough

oo = Tgge

is a virtual isotropy of €00, With y! := f’-l and all other y/ = 0. Thus a single element of
ker DF(£) is sufficient to represent the virtual symmetry L.

Following [Fied]| we may arrive at global Hopf bifurcation results for integral equations
via two successive approximations: first a generic approximation with a nongeneric ODE-
result (this step is our main concern here) and then an ODE-approximation to the integral
equation. It seems impossible to achieve this by a single approximation step, say by passing
to a diagonal sequence. According to the proposition given above, we may then need two
elements of ker DF(&g) to represent the virtual symmetries on the second (integral equation)
level. It is not clear at present whether there is a more natural concept of virtual isotropy,
stable under limits, which would involve only £co and a single element y! of ker DF (€00 )-
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4.5 Remark :

Compactness of the group I' is used only in proposition 4.3. It enters into equivariance of
the projections P and Q. Indeed projections can be made equivariant using the Haar measure,
see [Vanl, theorem 2.5.9]. If 5 and =’ are both Hilbert spaces with orthogonal action of I,
we may drop the assumption that I' is compact. Just take orthogonal projections for P and

Q.

§4.3 Virtual symmetry

After these generalities on virtual isotropy we return to the specific problem of periodic
and stationary solutions in the setting (4.1). Recall our definition 1.2 of virtual period and
virtual symmetry: z(t) has virtual period ¢ > 0 and virtual symmetry (H, K, 6) if there
exists a solution y(t) of the variational equation such that the pair (z, y) has minimal period
g and symmetry (I?, f(,é) From proposition 4.3 we derive

4.6 Corollary :
Let I' be a compact Lie group and f; a sequence in C!(A x X, X), I-equivariant in z € X,
with nonstationary periodic solutions (A;, z;(-)) of minimal period p; > 0. Assume that

Ay & Aso in A,
Pi ™ Poo in R,
z;(:) & Zool) in C°(R, X), and
fi = Jfoo
C!-uniformly on bounded subsets of X. Finally assume
(H,K,6) is the symmetry of z;(-), for all ¢. (4.8)

Then (H, K, 6) is a virtual symmetry and po is a virtual period of zZoo(').
Likewise, let (A;,z;) be on a rotating or frozen wave of f; with symmetry (H,K,O) or
(H, K,+0), independent of 1. Then (), z;) satisfies

~o;Rz; + fi(Xi,2) =0, (r.21) |

as in §1.2. Assume

a; — Qe in R,
;() > Zoo in X,and
fi & Jfoo
C!-uniformly on bounded subsets of X.
Then z is

on a rotating wave, or (4.9.0)
on a frozen wave, or (4.9.8)
a center in X¥, or (4.9.¢)
a stationary solution in X¥ with (4.9.d)

dim(XE Nker Dy f(hoorZoo)) > 2.

Moreover, (I?,f(,é) is a virtual symmetry of zo, in cases (4.9.a,c) and (H,f(,ié) is a
virtual symmetry of zo, in case (4.9.b).
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Proof : _;-\.
Consider the periodic case first. We apply proposition 4.3 to the setting (4.1). Define ._:
.,::
&ilr) = =z(pir) ‘s
Fi = F(fis’\ia')pi)' ::-;
o
- - o
Then F; is a Cl-map from = := C!(R,X) to EZ':= CY(R,X). In §1.2 we have already :;
mentioned equivariance of F; with respect to I" := I' x S! acting by ::

\

A1, 9)6() = p()&:(- — ). (1.25)

Obviously our assumptions guarantee F;(}§; = 0, { — {c In C_'O(R,X) and F; — Fy, C'-
uniformly on bounded subsets of C!(R, X), if we define

L
NN

By c"l. (3

WY

€oo(T) = Zoo(PooT)

4.10
Fooo = F(fom Ao s Peo): (4:10)
Because F;(&;) = 0, (4.1) implies §; — € even in él(R,X). Note that Fu, is Fredholm
[Vanli, §2.2:. Finally,

~

Lo = H' = {(h,6(h)|he H)

is the isotropy of &;, for each 1, as was noted in (1.26). Thus o is a virtual isotropy of €.
By remark 4.4, a single y! € ker DFoo(€o) suffices to represent this virtual symmetry:

O
H - P(fooyl)

It remains to reinterpret this virtual isotropy on the £oo- level as a virtual symmetry of the
periodic solution ze,. First note that po, > 0. Otherwise £5, and y! are both constants, by
(4.1}, and consequently

(id,9) € I ., = H® = T
for some ¥ € S!\ {0). This is a contradiction, because £; has minimal period 1. Thus ps
is indeed positive. The same argument shows that the minimal period of the pair (£o0,¥!)
is 1. Rescaling this minimal period 1 by y(t) := y!(£/po ), to become pyo, identifies po. as a
virtual period and (H, I?,é) as a virtual symmetry of z,,. This completes the proof of the
periodic case.

Now consider the case of rotating and frozen waves. Passing to the limit in (1.21)’ we get

4

LN
'y *r

L Y 2 ]

~000RZoo + foo(AooyZoo) =0

If Rzoo # 0, aco # 0, then zo, is on a rotating wave:

A A

Zoo(t) = ezp(acR)zoo(0).

SN NN N

Likewise, the z; are on rotating waves for ¢ large enough. In particular their minimal periods
are eventually bounded:
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cf. (1.19). Passing to a subsequence, the p; may therefore be assumed to converge. Then
the first part of corollary 4.6 shows that (ﬁ,ﬁ’,é) is indeed a virtual symmetry of z.., as
required in (4.9.a).

If Rzoo # 0, aoo = 0, then T is on a frozen wave. Transforming the systems f;, foo with
some fixed € > 0 to

“y(t) = exp (—eRt)z(t)
!i(’\ay) = _€2y+fi(’\ay)
foo(X, ) = - eRy + foo(A, ),

as in (1.20), (1.21), this case reduces to the previous one because yo,, becomes a rotating
wave, cf. case (4.9.b).

If Rzo = 0, then foo(Aoo,Zoo) = 0. Thus z, is a stationary solution in XH. We may
apply proposition 4.3 directly to

Fi(z) := —a;Rz + fi(Xi, 1)

with z = £ € X = £ = =, this time. Because K is the isotropy of each z;, we conlude that
K is the isotropy of a pair (2, yo) with

— oo RYo + Dz foo(Aoos Zoo)yo = 0.
In particular, this implies Ry, # 0. If aeo # O, then
y(t) == ezp(aoo Rt)yo
is a rotating wave solution of the linearized equation
¥ = D:ifoo(roorseo)y-

Thus Zoo is a center with virtual symmetry (H, K, é) cf. case (4.9.c). But if aso = 0, then

yo and Ry, # O are linearly independent elements of XX N ker D, foo(Aoo, Zoo), cf. case
(4.9.d). This completes the proof of corollary 4.6. O

4.7 Remark :

Our notion of a virtual isotropy, of £ generalizes the notion of a virtual period of z in
the case of no symmetry I' = {¢d}. In fact, p > 0 is a virtual period of z if and only if
L := {(id,0)} < I':= T x §! is a virtual symmetry of

£(r) := z(pr)
This follows directly from definitions 1.2, 4.1 and the following claim. Given y’ € ker DF(¢)

with .
Negry2y) = {(1d,0)}. (4.11.a)

there exists a single y € ker DF(£) such that

Ly = {(d,0)). (4.11.5)
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To prove this claim we may assume, by remark 4.2, that only finitely many y’ are nonzero,
say those with j = 1,---,7. Defining

;
y = Y&y,
i=1

(4.11.b) holds for “most” ¢;. Indeed, suppose on the contrary that (4.11.b) does not hold.
Then the minimal period of the pair (£,y) is less than 1. Thus 1/k is a period of (¢,y), for
sonme integer k > 1, i.e.

]
£(1/k) = £(0) and Y e[y’ (1/k) - ¥ (0)] = 0. (4.12)

i=1

By (4.11.a), 1/k cannot be a period of (y!,-- ‘,y;). Thus the set of (g, - ,sj), for which

(4.12) holds, defines a hyperplane in R’ of codimension at least one. Varying k € IN we
conclude that (4.11.b) holds for “most” ¢;, namely for all those (), - - ,ej) which do not lie
on any of the countably many hyperplanes. This proves equivalence of (4.11.a) and (4.11.5).
Thus virtual isotropy generalizes virtual period. In particular, all previous results [M-P& Y2,
Chow&M-P& Y2, Fie4| on limits of minimal resp. virtual periods being virtual periods become
a corollary to our proposition 4.3.

Our next lemma tells how to determine all virtual periods and virtual symmetries of a
stationary center {Ag,z) in terms of its purely imaginary eigenvalues and of the group
action on their eigenspaces. This recipe is included for completeness and because it exhibits
an interesting structure. This time, we complexify the linearization D, f(A¢,z¢) and the
representation p of I' to X := X @ 1X in the usual way. For y € X we denote by

Iz ((y)) == {7 € Iz 1 p(9){¥)" = (¥)°}

the set of those v € I';, which leave the space (y)°, the complex span of y, invariant. This
should be constrasted with

Ty = {1€Tslp(My = y}

For later reference, the lemma also extracts the virtual periods (but not the virtual symme-
tries) of a periodic solution. In view of corollary 4.6, examples for virtual symmetries are
given by the many generic secondary bifurcations listed in §5, table 5.2.
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4.8 Lemma :

Let (A, z9) be a stationary solution of (1.1) for which all eigenvalues of the linearization
D, f(Xo,z0) are nonzero. We denote the mutually distinct purely imaginary eigenvalues, if
any, by 18; with 1 < |j| < 7 and with the numbering 0 < Bj=—-P_;forj >0.

Then (Mg, zy) has a virtual period ¢ > 0 and a virtual symmetry (f{, K,(:)) if and only if
there exists a nonempty subset

JC{jl1<; <}

and eigenvectors y; € (XK)C of 1f;, for j € J, such that conditions (4.13.a — d) below all
hold. We denote the symmetry of (zo,;) by (Hj, K;,6,). Obviously

H; = TIy({y;))
KJ' = F(10~yj)
The conditions are the following:
g = lem{2r/B;|j € J}, (4.13.a)

where [cm denotes the least common multiple;

Histhesetofall he ﬂjé_, H; for which the congruences
q

27/B; 9 = 0;(h) (mod Z) (4.13.)
admit a simultaneous solution ¥ € R/Z, for all j € J;
éh) = 9 (mod Z) (4.13.c)
if ¥ is such that (4.13.b) holds; and finally
kK = [) k. (4.13.d)
JEJ

In particular (Ag,zo) is an H-center because A < I';, by (4.13.b). Moreover, (Ag, zg) has
at most 27 distinct virtual periods, by (4.13.a).

Now let (g, zy) be a periodic solution of (1.1) with minimal period p. Then g is a virtual
period of (Ag,zo) if, and only if, (Mg, zo) has primitive e;-th roots of unity, 1 < j < 7, as
Floquet-multipliers and ¢/p is the least common multiple of a subset of {e; :1<j5<j}. In
particular, the minimal period is always a virtual period.
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Proof :
First we consider a stationary solution (g, zy) assuming that (g, zg) has virtual period
q and virtual symmetry (H, K,0). Then there exists y(t) € X with minimal period ¢ > 0

satisfying
¥ = D;f(Xo,20)y (4.14)
such that (z(,y) has symmetry (f{, f(,é) By L? Fourier decomposition we may write
y(t) = Y geet3r/an, (4.15)
keZ
and y; # 0 implies that
18 =1k-2n/q
is an eigenvalue of D, f(Ag, zy) with eigenvector §. Therefore we may rewrite (4.15) as
y(t)y = D yeh (4.16)
1<)71<5

In particular, the summation in (4.16) is finite. Define

= {7 > 0]y, #0}.
J is nonempty because y Z 0. Noting that ¢ > 0 is the minimal period of y(-), we obtain
g =lem{2n/B;|j € J} (4.13.0)

from (4.16). Note here that y_; = g, because y is real.
To prove (4.13.b,c) let 7 € J be arbitrary and pick y; # 0 as above. Note that

l/q —if;t
o= = y(t) e Pt dt,
Yy alo (t)

by Fourier decomposition; cf. also (4.15). Therefore, p(h)y(t) = y(t + ¥¢) holds for each
t € R if and only if )
ph)y; = Py, foralljeJ. (4.17.a)

On the other hand we have for each h € [\,¢ s H; that

plh)y; = €&mOilhly, for all j € J, (4.17.b)

because (H;, K;,6;) is the symmetry of (zo,y;).
Now suppose h € H, ¥ := 6(h). Then (4.17.a) implies h € Njes Tzo({y;)°) = N;es Hy-
Thus (4.17.b) applies, too, and

q
9 = 6;
/B, J

(h), (mod Z),

for all j € J.
Conversely suppose h € ﬂ]-e s H; and ¥ solves all the above congruences. Then (4.17.b)

implies (4.17.a), and consequently h € H, 6(h) = 9(modZ). This proves (4.13.b, c).




ﬂ kerej = ﬂ Kj.

JjeJ jeJ

This proves (4.13.d) and thus shows the one direction of the equivalence claimed for stationary
solutions in the lemma.

To show the other direction we just define y(t) by (4.16), putting y; = 0 for 5 ¢ J. Then
g is the minimal period of y(t), by (4 13.a), and hence it is a virtual period of zy. Defining
(H,K,0) by (4.13.6 —d), and (H, K, ) to be the virtual symmetry of (A0, z0) associated to
y, we see from the previous reasonmg that H = H K K, and 6 = 6. Thus (Ay,zy) has
indeed a virtual symmetry (H, K,G).

The claims for the virtual period of a periodic solution (A, zg) are proved by linear algebra
similar to the stationary case, and we omit the details which are given e.g. in (Fie2]. This
finishes the proof. O

4.9 Remark :

The previous lemma helps us to conceptually separate the geometric aspect from the dy-
namic aspect. Geometrically, we are given representations on eigenspaces, eigenvectors y;,
and their isotropies H; = I';,({y;)¢), K; = F(Io-yj) . Even the symmetry (H;, K;,©;) of the
pair (zy,y;) can be determined purely geometrically from

p(h)y; = €m0y, (4.17.8)

for any h € H; , because y; is an eigenvector for the linearized flow. Taking linear combina-
tions y = ) y; the dynamics part, i.e. the eigenvalues +i8; themselves, enter via (4.13.8).
Given the symmetries (H;, K, ©;) of the pairs (zo, y;),7 € J, consider the homomorphism

(R/Z)!
6,(h))je

e: anJ H; —
h -

Obviously, ker @ = ;¢ K; = K. Moreover
jeJ

is a compact abelian Lie group. We may view im 6 as a lattice in the torus (R/Z)"!, or even
in the covering space R!7!. Here we use the term lattice freely, to include the non-discrete

cases.
Now let k; 5;77 = (K;)jes - Then
A = Q"l(spank),
by (4.13.5). Put differently,
H/IK = (spank)nim@.
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Knowing the eigenvectors y; , the lattice im @ is fixed independently of the values of the :' )
Pj . Varying the f; , we can adjust spank to be any subspace with rationally dependent ¢
) coefficients. The group H varies correspondingly. ».::
Fixing @ and spank, and hence H, the vector k is determined uniquely by k; > 0 and S
lem(1/k;)jcy =1, cf. (4.13.a). Finally, this determines 6 by e
. o
k;6(h) = 6;(h), ]
o~
forallje J, he H. o
In this way virtual symmetry is a synthesis between geometry, represented by ©, and .
dynamics, represented by k. :::
4.10 Remark : .r-.
Let us briefly relate our result on virtual symmetries of a stationary solution (Ag, zo) to the T
work of Golubitsky and Stewart [Go&St1, Go& Sch&:St|; for more examples in their direction N
see [Go&St2,3, Mon&Rob&St, Rob&Swi& Wag]. Note that they are interested in sufficient ;-h
conditions for local equivariant Hopf bifurcation with symmetry (H, K,©) whereas lemma -’:'.f—
4.8 gives necessary conditions for bifurcation. They consider the case of only one imaginary 'z:
pair +1 of eigenvalues (j = 7 = 1,8 1= f; = 1,9 = 2r/B) at 2y = 0, Iy, = I'. The o
bifurcating branches of periodic solutions then arise from eigenvectors y of 18 in a fixed point .
N - LS
subspace of H” under the action s of I' = I' x §! on X°. This action is given by
A9y = e p(r)y )
Their crucial condition for bifurcation is that the space of such HP fixed eigenvectors has ~
complex dimension 1. In our setting this requirement means that L
I;,({y)) = H o
is satisfied for a unique complex one-dimensional subspace (y)¢ of the eigenspace of i3. For ;‘:
K:=TI, NIy, ,m:=|H/K| we obtain from (4.13.c) that @
%
6 = r (mod m) -~
“
where r is the representation of H/K = Z, on (y)°. ::?.::
By now it is time to remember that virtual periods and virtual symmetries come up in our -
main theorems 2.9 and 2.10 on global equivariant Hopf bifurcation. Only the next lemma o
! uses the analyticity assumption (2.20.c) which enters into these theorems. In (2.20.c) the :-‘_::
linearizations L{‘“(A), restricted to XX along the stationary branches (A, z/(A)) € 4 x XHo, s
were required to depend analytically on A near centers. We will obtain a bound ¢y on the Yy
I virtual periods, which is uniform on a dense subset of the set of centers on these branches. 2
This way, we will avoid that our global continua consist only of centers, cf. §7. Denote o
V P(co) : the set of (A, zf(A)), 0 < I < I, A € 4, such that (4.18) _f
all virtual periods g of (A, z/())) for virtual sym- o
metries (H, K,0) with K > K satisfy "o
qg < ¢




4.11 Lemma :

Let nondegeneracy assumption (2.20.a) and analyticity assumption (2.20.c) hold.

Then there exists a large cp > 0 such that the set V. P(¢y) is a dense subset of the set of
centers

{(AfA)]0<I<I A€ 4, and LIKO(/\) has imaginary eigenvalues } .

Proof : _
Let us work in X5, Then the lemma and its proof reduces to [Fie2, lemma 4.8] and the
proof given there.0

We conclude this section with a lemma relating the symmetries of a periodic solution z(t)
to its virtual symmetries, in case the virtual period equals the minimal period. It turns out
that the symmetry of z(¢) extends the virtual symmetry, in that case. In some applications
we will encounter virtual symmetries which cannot be extended, for group theoretic reasons,
cf. §8. In those cases, virtual symmetry coincides with symmetry provided virtual period
coincides with minimal period.

4.12 Lemma :
Let z(t) be a periodic solution of (1.1) with minimal period p and symmetry (H, K, ©).

Let ¢ = p be a virtual period of z(t) with virtual symmetry (ff, K,G) Then
H<H and 6=06ly . (4.19)

In other words _
B < H; (4.19)'

the symmetry extends the virtual symmetry.
In particular, H = H implies (H, K,0) = (H, K, 6).

Proof :
The proof is easy. It uses only definitions 1.1 and 1.2. Let y(t) represent the virtual

symmetry (f{, f(,é) and the virtual period ¢ = p. Then for all he HteR

~ A

(p(R)z(t), p(R)y(t)) = R(z(t),y(t) = (=(t+6(R)p), y(t+ 6(h)p))
Hence H < H. Because p is the minimal period of z and
p(h)z(t) = =z(t+O(h)p), forallhe H,te R,

we also conclude O(h) = 6(k) (mod Z), i.e. 6 = 6|,;. This proves (4.19). The remaining
claims follow trivially from (4.19) and the easy proof is complete. O

In case ¢ # p, lemma 4.12 need not hold. Examples with ¢ = 2p are given by the period
doubling bifurcations listed in §5, table 5.2.
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| §6. Generic local theory

§6.1 Outline

In this section we present a reasonably complete list of bifurcations of periodic solutions
for equations

r = f(’\a :E)

with f generic, but equivariant with respect to a cyclic group G = Z,,, n < oo. For compli-
cated groups G we are unable to give such a theory because complicated singularities occur
which are not sufficiently understood. Fortunately, cyclic equivariance is intimately related to
periodic solutions by their symmetry (H, K, ©); and the “reduction” to cyclic G (2 Hy/K.)
was motivated in §1.5. Our results and proofs are much in the spirit of the Kupka-Smale
Theorem [Kup, Peix, Smal] and its one-parameter generalizations [Bru, Med, All&M-P&Y2,
Fie2], relying heavily on transversality theory.

We proceed as follows. In §5.2 we briefly state a simple result on generic local Hopf
bifurcation under Z,-equivariance, n < co. Three types of secondary bifurcations of rotating
and frozen waves are then discussed in §5.3: turn, flop doubling, and freezing. In §5.4, discrete
waves provide us with even six cases: the turn, three doublings (flip, flop, and flip-flop), and
two pitchforks (flip and flip-flop). Fortunately André Vanderbanwhede noticed that two of
these cases are essentially equivalent, cf. lemma 5.12. Thus only five cases remain. Concentric
waves are a special case of discrete waves which reduces to the case of no symmetry discussed
in §3. Our generic results are summarized in §5.5, theorem 5.11 and table 5.2, postponing
genericity proofs to §10. In our treatment of discrete waves we favor Poincaré maps, cf.
€3.3. For a very elegant treatment of secondary bifurcations in the operator setting (1.23) cf.
[Van4]. However, genericity is not discussed there.

£5.2 Generic centers

The term generic center was introduced in definition 2.2.

5.1 Lemma :

Let (Ao, zg) be a generic H-center with isotropy Gz, = H < Z, and with representation
r of H as explained in §2.2, see{2.4.b). Then the bifurcating branch (A(s), z(s, ), p(s)) of
periodic solutions has symmetry (H, K, ©), independent of s near (A, zg), such that

e = r (mod |H|, if |H| is finite) (5.1)
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Proof :

Of course we could give a direct proof just repeating [Cra&Rab2| in an H-equivarisnt
setting. Instead, we do a little exercise on virtual symmetry.

For |s| > 0 small enough, the symmetry (H, K, 8) of (A(s), z(s,-)) is a virtual symmetry «f
(Ao, zg) by corollary 4.6. Because D; f(Ag, ) has only one simple pair of purely imaginary
eigenvalues +18 with eigenvectors y, 7, cf. (2.3.a), we conclude that

plhyy = €™My forallhe H.
Together with ‘
p(h)y = 62"""1/, forallhe H (2.4.4)
this implies
& h = OHh) = r-h (mod Z), forallhe H

where © is represented by an integer as was explained in (1.28). Now (5.1) is immediate and
the proof is complete. O

As was promised in §2.2, the term “generic center” is justified by

§.2 Theorem :
Let G = Z,, n < co. Then all centers are generic centers for f satisfying (2.13), i.e. for
generic G-equivariant f.

For our notion of genericity see §1.5, definition~1.3 with H, := G and K, := {0}. Also 7
was defined there, see (1.36).

A proof of theorem 5.2 can be given directly by explicit perturbations or, more elegantly,
by transversality theory, see §10.4. A particularly puzzling situation arises for G = Z
and H-centers (A, zp) with H = G, discrete. At first sight this case seems to contradict
theorem 5.2, because the group G would force D, f(Ay, z() to have an eigenvalue 0. Indeed
z¢ is on a frozen wave. But generic frozen waves, i.e. freezings, will never be centers as we
shall see in the next section, cf. definition 5.3.

§5.3 Rotating and frozen waves

We begin to discuss secondary bifurcations of periodic solutions (A, zy(')) with minimal
period p and symmetry (H, K, ©). As before we assume f € 7 is G-equivariant, G = Z,,, n <
oo, cf. assumption (2.2). In this section we specialize to n = oo, to allow for rotating waves
(H = Z, K discrete). In principle, H itself could be discrete though G = Z  is not.
Geometrically, such solutions would provide invariant 2-tori which are foliated by periodic
solutions as well as by periodic group orbits. We exclude such solutions here, returning to
them in §§8.4.8 and 9.6. The three generic types of secondary bifurcations of rotating and
frozen waves, H = G = Z = R/Z and K discrete, are collected in definitions $.3 and 5.5
below.

We derive an algebraic equation for rotating waves z(t). Forany h¢€ H = R/Z we have

p(h)z(t) = h z(t)

1

(t + O(h) p)

2(t+ 60 h p) (5:2)
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for some © € Z \ {0}. Define infinitesimal rotation by -
‘¢
Rzy 1= Dyp(0)zo , :::
Cd
cf. (1.20). Then (5.2) implies p
Rz(t) = 6Opz(t) # 0. p
o,
Therefore z(t) is a rotating wave solution if and only if :‘
b
—aRzy + f(/\, I()) =0 (5.3)
=)
for some z,, = z(t,)) with Rz # 0 and a € R\ {0}. Note that :\
A
a = (6p)t. (5.4)
Next suppose Hzy, is a frozen wave, i.e. f(A, zy) = 0 and G, is finite. Then Rzg # 0 and X
.. satisfies the same equation (5.3) but with ¢ = 0. This fits to p = oo in (5.4), and the -
usually dreadful complication of period blow-up is resolved into discussing zeros of a. The ;:
formulation (5.3) was already used by Auchmuty [Au], 1978. ;:;
For later reference (cf. §96 and 10) we briefly calculate the z-linearization, along a rotating z‘n‘
wave z{t) through z, of the flow ¥4 (f, A, z) of (1.1). Obviously, y(t) := Dzvy:(f, Ay, z0)¥0
satizfies D o
O Ao, z(t))y(t e
i) £SO, 2{t))(t) 65a) &
y(0) = wo. 7~
From equivariance of f we easily obtain the solution y(t) and, accordingly, 1
Dowe(fh0,70) = plat) ezpl(—aR + Dy f(Ao, zo))t). ORI
:\(
Secondary bifurcations are conveniently described in the setting (5.3) using Poincaré maps Lf
or, equivalently, Ljapunov-Schmidt reduction. Fix a Poincaré section § = {zy} + 8’ in X = o
RY, transversely to the group orbit Hzj of a (rotating or frozen wave) solution (ag, Ay, Z() e
of (5.3), cf. fig. 5.1. It is particularly convenient to choose S’ orthogonal to Rz(; this makes e
S' invariant under the isotropy K = G, of zg. Let P denote orthogonal projection onto j:f
S'; then @ := 1 — P is the orthogonal projection onto the tangent Rzy of Hzy. Thus the -
projected equation -\.::
-aQRz+ Qf(A,z)=0 (53)¢ ~
can be solved by the implicit function theorem for 't
-:\
a = a(fv A I) ’ (56) :::
2
locally near (ag, Ag,zg), because QRzyp = Rzg # 0. To find all rotating or frozen waves, e
locally, it remains to solve N
:\J'
~
T(f,Az):= Pl~a(f, A, z)Rz + f(),z)] =0, (5.3)p N
Y
where N
T AT xAx8)pe — S’
-J\
-""
BA
=
S
)

.
o
tnfn’a
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Fig. 5.1 Poincaré section for a rotating wave

is equivariant with respect to the action of K on S’. Thus secondary bifurcations of rotating
and frozen waves are exactly the bifurcations of the zero set of T.

As a first example, we discuss freezing (generic frozen waves), aiming at definition 5.3

below. As we have indicated heuristically in §1.2, at a freezing a rotating wave slows down
its speed of rotation and then starts rotating in the opposite direction, reversing the sign of
6. In view of (5.3), (5.4) this will correspond to a simple zero of a along the solution path
of (5.3)p.

Let Hzy be a frozen wave of f(Ag,-) with symmetry (H, K,+6) and Poincaré section S
as described above. Assume

the spectrum of D, f(Xo, zo) on the imaginary axis consists (5.7.a)
of only a simple eigenvalue 0.

The corresponding eigenvector is Rzg, of course. Equivalently to (5.7.a) we may require
D:T(f,20,%0) : §' — §' is hyperbolic. (5.7.0)

By (5.7.a) the stationary solution (g, Zo) is not allowed to be a center. By (5.7.a)' solutions
of (5.3)p near (Ag, Zg) lie on a differentiable branch (A, z,), by the implicit function theorem.
We obtain a corresponding map A — a(f, A, z,). We require

A — oaf,\,z)) hasasimplezeroat A = JAg. (5.7.b)
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. oy

Then the local branch (A, z,) consists of rotating waves, for A # Ao, rotating in opposite A

direction for A on opposite sides of Ag. This follows from (5.4) because a changes sign at a o

simple zero. Moreover, © just changes sign as A passes through Ag. Indeed, I';, = K is inde- -

pendent of A near Ag by virtual isotropy proposition 4.3 and hyperbolicity assumption (5.7.a).
Denoting the symmetry of z, by (H, K, ©,) we conclude that |©,]| = |K| is independent of

A. Thus O just changes sign at Ao, because a does. ‘:"

.t

5.3 Definition : hl¥

Let Hzo be a frozen wave of f(Ag,-). We call (A, zg) a freezing if conditions (5.7.a, b) ba

above hold; f. fig. 5.2. et
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Fig. 5.2 A freezing

RAL

Can period doublings of rotating waves conceivably occur? Denote solutions, minimal -
period and symmetry on the primary resp. secondary branch by

z,p,(H,K,6) resp. i,5,(H,K,6)
Then a period doubling as in definition 3.2 would imply
A = H = Z
because we have rotating waves, and

e = 20 )

because & = _éﬁ is close to a = Op, p is close to 2p > 0, and 6,6 € Z. Thus K = ker6 = (e
(he R/Z |6 -he€Z)} < K and @
N
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i.e. K has index 2 in K,|K| = |0| = 2|6| = 2|K|. Thus period doubling of rotating waves
can only occur if isotropy breaks from K to K. We consider such a symmetry breaking
abstractly in definition 5.4 below, calling it a flop. Definition 5.5 will apply this to rotating
waves: we obtain a flop doubling.

In the abstract definition, suppose we are given a K-equivariant map z € C3(4 x X, X)
with K = Z | and k even. Let z()g, zg) = 0 and suppose K is the isotropy of zy. We assume

the spectrum of D,2(Ao, z¢) on the imaginary axis consists (5.8.a)
of only a simple eigenvalue p(Ag) = 0.

Let yo denote the eigenvector of p{Mg), and (yy) the eigenspace. By equivariance, K leaves
(yo) invariant. Because K = {0,1/k,---,(k — 1)/k} has even order there is exactly one
nontrivial representation p~ of K on {yp), given by

P (1/k)y = -—wo.
Assume
K acts on the eigenspace of u(Ag) by p~ . (5.8.6)
Then the restriction )
D.z(Xo, zo)|lxx : XK - xK

is invertible, and we get a primary branch (A, z,) € A4 x XK of zeros of z for A near A.
Along this branch, the eigenvalue u(Ay) continues as a real eigenvalue u(A) of D,z(A, z,).
We impose the transversality condition

Dsp(rg) # O. (5.8.c)

By the usual local bifurcation theorem [Cra&Rabl], (5.8.a,c¢) imply bifurcation of a local,
unique secondary branch

(As)2(s)) » sl <e,

of zeros of z. Via (5.8.b), our virtual symmetry proposition 4.3 (or directly: equivariant
Ljapunov-Schmidt recudtion) implies that this branch has isotropy

K = kerp~ = {0,1/k,---,(k—-1)/k})

with k = k/2. Thus the secondary branch is a pitchfork, i.e. it can be parametrized such
that A(s) is even in s, and

p(1/k) Z(s) = Z(-s). (5.9)

We finally require a curvature condition
D3)0) # © (5.8.d)

for the secondary branch; cf. fig. 5.3.
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Fig. 5.3 4 flop

5.4 Definitiop :
Let (1, Z0) € Ax XK be a zer, of a K—equivan'ant map g ¢ C3A x X, X) as above. Tpe,
we call the zero (Aq, Zy) a flop of 3 if conditiops (5.8.q ~ d) above holq,
For ater reference (lemma 59 and theorem, 5.11(c) below) we also define the following
. » . A‘

the Spectrum of D,z (Ao,zo) on the ypjt circle Consists of (5.8.0)"
] 1.

elc.. This accounts for the modijfie eigenvalye conditiog (5.8.0 € reader jg €couraged
to contragt this definjtiog of a Op with definjtiog 3.2 of 5 flip. Note that 5 flop of <Az
constitutes Pitchfork, y, ever, taking 2 (Az):= g A 1Z) for 3 Totating wave, , flop

of 2(), z) .= T(f,),z) (cf. (5.3)p) defines 3 Period doubling of T, ie. 2 “Aip” of 1,
ignore eqUivarjance with Tespect to K. The worq flop shoylq emphasize this equivariance.
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§.5 Definition :

A turn of rotating waves is a turn of zeros of (A, z) := T(f, A, z) which are rotating
waves, cf. (5.3)p and definition 3.1. Applying virtual symmetry proposition 4.3 as for the
freezing, the symmetry (H, K, ©) remains unchanged near a turn of rotating waves. o

A flop doubling of rotating waves is a flop of zeros of 2(A, z) := T(f, A, z) which are

rotating waves with symmetry (H, K, ©) on the primary branch and with symmetry (H, K, 6) p
on the secondary branch. In particular K = Zlal with © even, K = ZIGI/'J’ and © = 6/2; 9
cf. fig. 5.4 and definition 5.4. 3
P
¢
~
>
X secondary ;
| ©/2 :
»
primary
<
Fig. 5.4 A flop doubling of rotating waves. k = |©@]. "
bt
§5.4 Concentric and discrete waves K
Secondary bifurcations of discrete waves provide the largest number of distinct cases. We ‘

consider f € 7, G-equivariant, G = Zp, cf. assumption (2.2). Except for the next definition
where n = 0o, we assume in this section that n is finite.

Consider concentric waves with H = G = Z , first. Such waves have symmetry (H,K,0) = R
(Z oo, Z ,0). They lie entirely in XG, where G acts trivially. :
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5.6 Definition : -
We call a concentric wave (Mg, zg) in XG,G = Z », a turn resp. a flip doubling ifit isa :
turn resp. a flip doubling in the sense of definition 3.2 for the flow restricted to X¢. But in Y
addition, we require that the Floquet multipliers of (A9, zg) on the unit circle, with respect b5
to X, equal those of the restriction of the flow to XC, with equal multiplicities. h
The additional assumption guarantees that any bifurcating periodic solutions remain in ;
X6, remaining concentric waves. '
Now we consider finite G and discrete waves. For a geometric classification, as well as
for genericity proofs we introduce the following notation, suppressing the parameter A for a )
moment. For a periodic solution zy(t) with minimal period p and symmetry (H, K,0), G = o
Z, ,H={0, —}l;,~-,h;—1}, K= {O,%,- --,5%1}, O € Z (mod h) we trivially observe -4
m 4
E - & for m:=|H/K|. (5.10) A
As before, we choose a Poincaré section § = {zy} + S to z(t) at say z¢ := z(0), such that K A
leaves S invariant. This certainly holds if §' = (£y)L. Next we may choose h € H such that :_
L)
h generates H,and (5.11.a) N
ekh) = 1/m. (5.11.b) p;
In particular ©(h) generates im @, and i,
hp := mh generates K =ker®. (5.11.¢) ;::
-
o
Note here that G is written additively, while the representation p is written multiplicatively; '
e.g. p(mh) = p(h)™. Later on it will become important that h is not at all uniquely ~
determined by conditions (5.11.a,b), see lemma 5.12 below. For the moment, however, we :::
consider h as given and fixed. Applying h to our Poincaré section S we now define further N
Poincaré sections S; to the same solution z(t) by o
S; = phYS, 0<j<m. 4
Obviously Sop = S,, = S, because K leaves S invariant. These sections yield “Poincaré maps” -
ﬁj : (Sj)loc - Sj+l ) ':
mapping z € S; to the point where its positive semiorbit first hits S;;, as usual (cf. fig. -
5.5). This occurs after a “Poincaré time” 7; = 7;(z). Let R
: S :“'"
n Stoe  — '~
denote the usual Poincaré-map and put 3
Mo:=pR) Yy : Sioe — S (5.12)
o
)
[ ]
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Fig. 5.5 Poincaré-maps for discrete symmetry

5.7 Lemma :
With the above notation we obtain

nmn = p(ho)”én ’
where IT* = ITy o - - - o ITp denotes the m-th iterate.

Proof :
From G-equivariance of the flow (1.1) we get

n, = p(hY ITop(h)™7 = p(hY T Mop(h)~7 .
On the other hand

n = ﬁm-xoﬁm_zo---oﬁloﬁo =
= p(h)™Hop(h)~ ™) p(h)m=1) op(h)~ (™= o ... 0 p(h)2MTop(h) " p(h)To =
= p(W™AT = plho)NI§",

o
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‘» which completes the proof. O

Note that /1, is K-equivariant. We will prove in §10 that the only genefic bifurcation of 1,
are turns, flips, flops, and flip-flops (see definition 5.8 below). This is formulated in lemma
5.9. Via IT = p(hy)JI§" we then obtain a complete list of bifurcations for the Poincaré map

IT (and its iterates JT') because the sets “Fix” of fixed points satisfy
UFizm = | Fiz 1.
i€V i'eN

We work out the details and summarize our claims in §5.5, see theorem 5.11 and table 5.2.
To define a flip-flop bifurcation let 2 € C3(4 x X, X), K-equivariant with respect to z,
have a fixed point (Ay, zg) € 4 x X¥:

Z(Xo,z0) = zo.

We think of £ as a “Poincaré” map Iy, but give an abstract definition. To account for the
“fip” (definition 3.2) we assume

the spectrum of D, Z(Ag,z() on the unit circle consists of (5.13.a)
only a simple eigenvalue u{)\g) = ~1.

Thus we may hope for fixed points of Z(A, Z(},-)) to bifurcate at (Ag,zg) from the local
primary branch (A, z,) € 4 x XK of Z-fixed points. To account for the “flop”, we assume
that K = Z with even k and

K acts by p~ on span {y}, (5.13.5)

where p~ is the nontrivial scalar representation of X as in (5.8.5). For the continuation u()
of u(Ag) along (A, z,) we again impose the transversality condition

Dyu(xg) # O. (5.13.c)

As usual, [Cra&Rabl] then implies a pitchfork at (Ao, zg) with a bifurcating local, unique
branch

(A(s), z(s)) sl <e

of fixed points of Z(A, Z(A,)). Again, we may parametrize the secondary branch over span

{vo} such that
p(1/k)z(s) = z(-s),
Z(Ms)z(s)) = z(-9).
In addition, we require a curvature condition

D3)\0) #£ O (5.13.d)

for this secondary branch; cf. fig. 5.6.
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Fig. 5.6 A flip-flop doubling.

5.8 Definition :

Let (Xo,zo) € 4 x X¥ be a fixed point of a K-equivariant map Z € C3(4 x X, X).

We call (Ag,z¢) type O, turn, or flip, if it is type 0, turn, or flip, respectively, for the
restriction of Z to A x XX cf. definition 3.2. But in addition, we require that the spectrum
of D; Z{Ag,zg) on the unit circle equals that spectrum of the restriction of Dz Z{)g,zg) to
XK with equal multiplicities . In particular, this excludes symmetry breaking bifurcations
of fixed points of £ and its jterates.

We call (Ao, z¢) a flip-flop, if conditions (5.13.a-d) above hold.

Utilizing also our definition 5.4 of a flop of £ := [Ty, we can now express genericity for the
“Poincaré” map [T, defined in (5.12).

5.9 Lemma :

Let (Xg,zo) be on a periodic solution (Mg, z(t)) of f. Then, for generic f, one of the
following holds for the fixed point (g, zq) of £ = Iy:

Casec0 : (Mo, Zo) is of type O
Casec.l.l: (Ao, Zo) is a turn
Case c.1.2: (Ao, Zo) is a flop
Casec.2.1: (X0, o) is a flip
Case c.2.2: (Ao, Zo) is a flip-flop,

where K := G, in definitions 5.4 and 5.8 above.
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The proof of this lemma requires transversality theory and is deferred to §10.
Let us return to the original (full) Poincaré map IT which relates to Ty by

m = plho)Ig"

(lemma 5.7), where hg = mh generates K as in (5.11.a — ¢). Our classification of bifurcations
of ITy leads to a corresponding classification of bifurcations of /7.

5.10 Definition :

We introduce a terminology for penodlc solutions (Ag, zg) of (1.1) with symmetry (H, K, ©),
viewing ()y, zo) as a fixed point of its Poincaré map IT1. Given the type of (Ao, z¢) as a fixed
point of IT,, and given m = |H/K|, a name is assigned to (Ag,zo) according to table §5.1.
These names are justified in theorem 5.11 and in table 5.2 below.

Case Ty n
c.0 type O type 0
c.l.1 turn turn
c.1.2 flop flop doubling

r c.2.1 m odd flip flip doubling
c.2.1 m even flip flip pitchfork
c.2.2 m odd flip-flop flip-flop pitchfork
c.2.2 m even flip-flop flip-flop doubling

Table 5.1: Terminology of generic secondary bifurcations of discrete waves.

§5.5 Generic secondary bifurcations

After the admittedly lengthy explanations and definitions for rotating, frozen, concentric,
and discrete waves we can now state the main result of generic local theory for cyclic groups
G =Z,, n < 0. The main result, theorem 5.11, embraces many cases, all listed in table
5.2.

Let us explain table 5.2. We consider a periodic solution (Ao, zo) with symmetry (H, K, 8).
Various possibilities of generic bifurcations arise. Case (a) summarizes those for which K =
H = G = Z . Case (b) considers rotating and frozen waves, i.e. K # H =G = Z . And
case {c) considers H < G = Z,, n < oo. We skip the possibility that G = Z » while H
is finite, i.e. |G/H| = oo. This one remaining case would lead to invariant tori which are
foliated periodically by G-orbits. We postpone a discussion to §§8.3.8 and 9.5.

Each of the cases (a-c) splits into several subcases, and we specify the names of the
respective bifurcations indicating the numbers of the appropriate definitions and figures.
The following columns denote the jumps in minimal period and symmetry from the primary
branch to the secondary branch with minimal period p and symmetry (H,K,6). The quo-
tient §/p is understood as the limit at the bifurcation point, of course. Because (H, K) are
subgroups of H,K we just give their index |H : H| resp. [K : K], to indicate symmetry
breaking. Redundantly we include m/m = IH/KI/IH/KI [H : H]/[K K], in case m
and m are finite. The final two columns indicate_the subtleiies of symmetry breaking in
case G = Z,, is finite. As in (5.11.a-c) we choose h, generating H, such that &(h) = 1/,
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analogously to h. We relate © to 6 in two ways. First we give 6(k) or,if [H : H| =2, 6(2h).
This defines the phase shift induced by the generator h or 2h on the secondary branch. Then
we supply an h, in terms of h, which induces a minimal phase shift of 1/m on the secondary
branch. To do this, we decompose |K| = k as

k=2 -k with k' odd.

§.11 Theorem : :

Let assumption (2.13) hold for f € 7, i.e. f is generic G-equivariant, G = Zyn, n < co. Let
(X0, z0) be any periodic solution of (1.1) with symmetry (H, K, ). Assume G/H is finite.

Then either (Ag, zy) is of type 0 (cf. definition 3.2), or (Ag, zg) occurs among the bifurcation
types listed in table 5.2.

It is not particularly difficult to derive normal forms for turns, flops, flips and flip-flops of
ITy, using e.g. the results in [Vanl], [Go&Sch}. After a glance at the perturbation results on
ITy in §10, this provides examples for each of the less obvious bifurcations listed in table 5.2
(c). They all occur, and they are all claimed to be generic. For nonlinear Zy-action (n = 2)
the cases of a turn and of a flip pitchfork are discussed in [Klig].

To prove theorem 5.11 we have to establish that table 5.2 gives a complete list of generic
bifurcations of periodic solutions. Again, this is deferred to §10 so that our line of reasoning
is not interrupted by a pile of technicalities. For now we only consider case (c), taking the
generic bifurcations of JT; for granted as given in lemma 5.9. The reason for this is two-fold:
from a transversality point of view lemma 5.9 is the thing to prove (rather than case (c) of
table 5.2), and deriving cas<e (¢) from lemma 5.9 will be a nice warm-up for §6.

Proof of theorem §.11, case (¢) :

Given the bifurcation for {1y at (Xo,z¢) and the action of hy = mh on the secondary
branch, the bifurcation for IT is completely determined because /T = p(hy}/I® by lemma
5.7. Applying lemma 5.9, it remains to verify the information contained in table 5.2(c) for
each of the cases (c.1.1-2.2) of lemma 5.9 and definition 5.10.

Case c.1.1, (Ao, zy) is a turn : )
Then we have a turn of /Ty within X*. Thus

IT(A, z) = p(ho)[o(2, )| () = =

for the ITy-fixed points (A, z) of the turn of [Ty through (Ao, zg). These (A, z) constitute all
fixed points of any iterate of IT. Thus H, K, 6, m remain unchanged.
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Casec.1.2. 1), 7 ;is aflop:
Forthe secnlary branch (A(s), z{<s}) we then have

Mo, rley) plhe) IO(A(s), )™ (2(s)) = plha)z(s)

=zx( =)z zxls) , fors#0,

berwuse k. generates K and K acts by p | see (5.8.6).(5.9). Thus /T sees a period doubling.
Nextowe oo that B H Indeed. z(s)  HL(A(s), 2(s)) = h YI1,(A(s), 2(s)), where [,

e P e g fronn S0t S)owath associated Poincaré time 1, of (5.12). Consequentiy,

hr I r 0 and hene h e Ho Because h generates H and because H < H w
bl N
We o that K 2k has index 2.in K - (h, . Indeed plh,)z(<) { s) 7 z(<)
wWhereas 02k g = plho) r(s)  z(<) This proves the claim.

Itrenan- v show that @k 1 2me Dendoting the minimal period of (A(s), (=)} by g{<)

W e to e o the above
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For the periodic solution z(s,t) through z(s) = z(s,0) this implies

p(h)z(s,0) = Mo(A(s), T(A(s), 2(s))) =

and we conclude that

~ 1
eh)y = —+
2m

0O |

It remains to verify that h := (k'm + 2)h satisfies conditions (5.11.a,b) for H := H and
m := |H/K| = |H/K| = m replacing H and m. Indeed, k'm + 2 and |H| = |H| = |K| -
|[H/K| = 2%k'm are relatively prime:

(k'm+2,|H)) = (kK'm+2,2°k'm) =
(k'm+2,k'm) =
= (2,k'm) = 1,

il

all because k’m is odd. Here (-, ) denotes the greatest common divisor. Thus there exists j
such that 3 (k'm + 2) = I(mod |H;), and consequently h generates H = H:

h = Jh € (h).

This verifies (5.11.a). To verify (5.11.b) we calculate (mod Z)

6(h) = (K'm+2)6(h) = u%+w@%+?
1 o omo 1 1
= k(§+7)+;+l = ;,

using that m is odd.

Case c.2.2, m even, (g, z;) is a flip-flop :
Reversing only the sign

plho)z(s) = z(-s) # z(s), fors#0,

this case is sufficiently analogous to the previous one, that we may skip the details.
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Case ¢.2.2, m odd, ()\g, z¢) is a flip-flop :
Because [T is a flip-flop, the secondary branch satisfies

My(Ms)z(s) = a(-s) # a(s) and
pho)z(s) = z(-s) # z(s) for s #0.

This implies
HI(A(s),z(s)) = plho)To(A(s), )" (z(s)) =

= Z{(-)"Hs) = a(s),

and IT sees a pitchfork of fixed points. Therefore

p(h)z(s) = IMo(A(s),z(~9))
does not lie on the periodic solution z(s,t) through z(s,0) = z(s). But
p(h)z(s) = p(R)*(Mo(A(s), NP(z(s)) =

)
= 11 (Ms), Fo(A(s), ()

does lie on the periodic solution z(s,t). Hence H is generated by 2h and [H : H| = 2; (K :
K| = 2 and 7 = m are obvious. This time, the Poincaré time 79+ 71 of (A(s), z(s)) associated

to I(M(s), ) o My(A(s), ) is given by

n+n = p(s)/(m/2)

and IT takes a Poincaré time of p(s). For z(s,t) this implies

ph)?2z(s,0) = M(As), Mo(As),2(s)) =

2 .
= z(sm+n) = z(s, - p(s))
and we conclude 9
6(2h) = o
It remains to verify our claim on k. First suppose (k'm + 1)/2 is odd. Then
(K'm+ 1,[H]) = (Km+1,2%'m) =
= (k'm+1,2%) = 2,

because k > 1 (|K| = k = 2%k’ is even, cf(5.8.5)). If on the other hand (k'm + 1)/2 is even,
then (3k'm + 1)/2 is odd. Still

(3k'm + 1,|H|)

(3k'm + 1,2%k'm)
= (3k'm +1,2%) = 2

as before. Thus, there exists j such that j - (k'm + 1) = 2 (mod |H|) resp. 3 (3k'm + 1) =
2 (mod H|). In any case, h generates H = (2h) because

2h = jh € (h),

which verifies (5.11.a). To verify (5.11.5) we calculate (mod Z) for h := (tm + 1)k with
appropriate ¢ € {1,3} as above

6(h) - Kmilgzh) = (k'm+1)/m
= 1/m = 1/m.
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Case ¢.2.1, m even, (), zy) is a flip :

This case is analogous to, but simpler than, the previous one. The simplification arises
because H breaks but K does not, so that m = m/2 and we may simply take h = 2h.
Omitting all further details, the proof is complete.D

Following a hint of André Vanderbauwhede [Vand4] we should now wonder whether any
generic bifurcation orbit (Mg, zy) corresponds to exactly one case from table 5.2, or whether
different cases may in fact be equivalent geometrically. Obviously, the geometries of turns,
pitchforks and doublings, as well as the geometries of concentric (H = Z ), rotating, frozen
and discrete waves are mutually distinct. Investigating secondary symmetries I-l, K of discrete
waves we discover that the only possible candidates for equivalent bifurcation orbits are the
flop doubling and the flip-flop doubling, when m is even.

5.12 Lemma :

Let f be generic as in theorem 5.11, case (c) and let m be even. Then flop doubling
and flip-flop doubling of (Ag,z,) are geometrically equivalent. More precisely, let h satisfy
(5.11.a-c) and suppose (Ao, zy) is a flop doubling. Then there exists h' satisfying (5.1}.a-c)
such that (A, zy) becomes a flip-flop doubling if we replace h by h'. And vice versa.

Proof :
First suppose that (Ao, z4) is a flop doubling. Let h € H generate H = H with ©(h)=1/m
and ©(h) = 1/2m. It is sufficient to construct h’, generating H, such that

,and (5.14.a)

1
- . 5.14.4
+ 3 ( )

1
m
_l

To achieve this, we first write |[K| = 2% k' with k' odd, 'H = 2%k'm, and observe that

(k'm+ 1, H) = (k'm+1,27'm)
= (k'm+1,2%) = 7,
where (, ) denotes the greatest common divisor, as before. Thus there exists an integer
7 € IN such that
) (K'm+ 1) = (mod |H)
Define
A (K'moe)a

Then h' generates H - (h), because
h Jk'm s 1A yh' ¢ (A
More-wer we obtain mod Z
Oh') (k'm s 1) m e and

LW (k'm s 1)/(2m) .

N . :
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Thus (5.14.4,b) are proved.
Vice versa, we may define

h = gk,
to turn a flip-flop doubling for A’ into a flop doubling for h. This completes the proof.

In loose terms, lemma 5.12 tells us that flop doubling and flip-flop doubling are “strot. .-
copically equivalent”: when observed with a suitable stroboscopic flashing, one bifurcati- 1
can be transfornied into the other. So far we have favored the standard construction of Poir
caré maps in our analysis of secondary bifurcations. In [Van4], Vanderbauwhede employs tlh:--
operator setting (1.23), (1.24),

F(f,p0€) = ~£é+m,e) = o, (1.2%,

instead. As in (1.25), symmetry comes in as the isotropy H? < G x S! of periodic solutir .-
¢ € C! with (minimal) period 1. Reparametrizing € by éx(7) := £(k7) we obtain an equival-ut
solution £ of (1.23) with related isotropy. This reparametrization lends itself to investigating
e.g. perind doubling bifurcations. Using an abstract Poincaré type map all bifurcations f
table 5.2 are then recovered (except of the freezing). In fact these bifurcations can all be

viewed simiply as Zo symmetry breakings of H®. Moreover, the equivalent cases of fi.;
doubling and fip-fiop doubling are not distinguished by this approach.

However, it is not attempted in 'Van4! to prove genericity in the sense of theorem 5 11
Rather it is assumed a priori that the nontrivial eigenspaces of the critical eigenvalue are
dimensional. This gives rise to the Z» symmetry breakings. We follow the more classio ol
minded Poincaré map approach, mainly because we are lacking a perturbation theory t
apply transversality theory directly to the operator setting (1.23). The obstacles might 1
be hard tos overcome. But probably, measuring the total difhiculty. the twe approaches w1
provide equal variants

We finush this section with an easy corollary, at last Recall from 512, (1.28) that €@ 41
O can be represented by integers. We relate these integers for those cases of thearen, 511
where H o H . using the same somorphist ¢ frone H to the corresponding cy by grouj
both «ases

5.13 Corollary :
U'nder the assumptions of thecrem 5 11, let (A, 2,.) be a secondary tafurcati -nwith 11
Let 1+ Di H , denote the binary orbit of @ f definition 2 4 Then,
24 4 J‘
Hir s Vs afreening In 4l ther  ases
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Proof :
The cases G = H = Z can be read off trivially from table 5.2. The freezing is alsc
covered there. Case c.1.1, the turn, is likewise trivial because @ = 6. In the remaining cases

we note that
20h) = 1/m = 6O(h) (mod Z),

and therefore

26 = 6 (mod |HI). (5.15)

This proves the corollary.0
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§6. Generic global theory

§6.1 Outline

With the local generic results (theorem 5.11, corollary 5.13) of the last section at hand, we
can now aim at a proof of our main generic global results for G = Z,, n < 00: a proof of
theorems 2.6 and 2.7. To prove these theorems some information on generic global bifurcation
diagrams is condensed into an equivariant orbit index #. For @ in the finite cyclic case n < oc
see §6.2, definition 6.1. For G = Z » see §6.6, definition 6.4. The orbit index @ indicates
which branch to follow at secondary pitchfork and doubling bifurcations. It turns out to be
a homotopy invariant, quite analogously to the case of no symmetry which was discussed in
§3. We recall that the case of rotating waves, G = Z o, is somewhat special because we
may continue rotating waves through a freezing, cf. table 5.2 and theorem 2.6. Therefore
we discuss the case of finite cyclic symmetry G = Z,, first. In §6.3, proposition 6.2, we
prove homotopy invariance of the orbit index ¢, and in §6.4, proposition 6.3, we relate @ to
the center index 7 at a generic center. These propositions then enable us in §6.5 to prove
theorem 2.7, and a “grasshopping” reader may read this proof immediately, skipping the
proofs of propositions 6.2 and 6.3 - at first. In §6.6, proposition 6.2 accounts for homotopy
invariance of @ through freezing and we conclude this chapter with a proof of theorem 2.6.

Below, our definitions of the orbit index @ may appear to come out of the blue. Why
should this particular index work to prove any global results? Couldn’t we come up with
a “better” index, tomorrow? Admittedly, our generic local results could yield other global
results as well, e.g. somewhat more topologically minded ones. For a brief discussion see
§9.3. Here we favor the following properties of the envisioned global bifurcating continuum

Z:

H = G = Z,, remains fixed along Z; (6.1.a)
once Z remains bounded, then the minimal periods blow (6.1.b)
up - not just any periods;

any X # 0 leads to global bifurcation, not just odd ¥; (6.1.¢)

cf. theorems 2.6 and 2.7. Our definition of the orbit index ® is the result of staring at the
local bifurcation list (table 5.2) long enough to extract these global properties from it.

Throughout this section, G = Z, is a (finite or infinite) cyclic group and f, satisfying
(2.13), is generic G-equivariant so that theorem 5.11 holds.

§6.2 The o1bit index #

To define the orbit index ¢ we switch from the Poincaré map point of view, adopted in €5,
to the operator setting (1.23) with (minimal) period as an explicit parameter. Recall that

F(f, M €0 p)(T) = —;é(mm,e(r)) = 0 (6.2.0)

with £ of (minimal) period 1 iff

z(t) = §(t/p) (6.2.b)

solves

et . . -~ L
PR T V. P P SRR .




= J0y2(t) | (1.1)

with (minimal) period p. Further, eigenvalues n € € of the linearization of (6.2.a) are called
Floquet exponents of £(-); their eigenfunctions y(7) satisfy

(DeF-y)(r) = —;y'(r)+uzfu,s(r))y(r) = ny(r). (6.3)

Note that y is required to have period 1, here. Floquet multipliers as used in §3.3 relate to
Floquet exponents by exponentiation: g > 0 is a Floquet multiplier of z iff 5 is a real Floquet

exponent of £ and
m e (6.4)

with the same algebraic multiplicities; for more details see e.g. [Ab&Mars, Hart]. So far the
cassical Floquet theory.

Period doubling bifurcations arise from real multipliers g near -1, i.e. from complex
exponents . The following observation relates negative p to real 7. Fora € {4, -} let

£9:={ye C'(R,X) : y(r+1)=uay(r)}, (6.5)

so £t are the periodic functions, and y € £~ are “anti-periodic”, but periodic with period
2. Note that
DeF : €a — 5“ (66)

is an unbounded Fredholm operator with domain £2NC(R, X) and with compact resolvent.
Moreover, u < 0 is a Floquet multiplier of z iff

pu = —em (6.7)

and 7 is a real eigenvalue of D¢F on 7. Again, the multiplicities of 4 and 7 coincide.

Remember our interest in periodic solutions z(t) with symmetry (H,K,8), H =G = Z,,.
We now restrict our attention to finite n, for a while. Asin §5.4, (5.11.a,b) let h € H generate
H such that

6(h)

where m = |H/K]|. In particular hy := mh generates K. For a,b € {+,—~} we define the
following subspaces of €. Given H,0O let
& the set of y € CY(R, X) such that

y(r+1) ay(r), and (6.8.a)
p(h)y(r) by(r + 6(h)). (6.8.4)

A direct calculation shows that £ does not depend on the particular choice of h € H which
satisfies (5.11.a,b). We omit the details. We claim that by restriction

DeF ¢ 60— EC. (6.9)
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Indeed, H?¢ = ¢ and y € €7 imply

p(R)(D¢F -y)(1) = —%p(h)z)(f)+p(h)D:f(z\,€(f))y(T) -

i

- b%y(f +O(h)) + Def (A p(R)E(T)p(R)y(r) =
= —}Dy(r +O(h) + Df(ME(r+O(R) y(r+O(h) ) =
= b(DeF y)(r+6(h)),

hence D F -y € €. This allows us to define

o, © the number of positive real eigenvalues 5 of D¢F on (6.10)
&7, counting algebraic multiplicities;

cf.(6.2), (6.3), (6.8), (6.9). Note that o is finite because positive real eigenvalues of D¢ F on
£? relate to real Floquet multipliers y with ap > 1, by (6.4) and (6.7).

With these preparations we can now define the orbit index @ for finite cyclic groups G =
Z,.

6.1 Definition :
ConsiderG = Zy ,n < 00, and let (A, z(t)) be a periodic solution with symmetry (H, K, ©),
rescaled to ¢ with minimal period 1. If H = G, then we define the orbit index & of z to be

are both even,
are both odd, (6.11)

(—l)”I if 07 and o
oA, z) = -~ (—l)": if 7 and o

0 otherwise,

where the o} are defined in (6.10) above. In other words,
#(0,z) = % (1734 4 (cp)dees). (6.11)

If H < G we put $()\,z) := 0.

For the case of no symmetry, i.e. G = {0} as discussed in §3, the orbit index @ reduces
to the orbit index of Mallet-Paret & Yorke [M-P&Y2| introduced in §3.4, (3.11). Indeed,
¢ = €% and €2 = {0}, by definition (6.8.a,}), because h = 0, O(h) = 0 in that case.
Relating eigenvalues n of D¢F back to Floquet multipliers, by (6.4) and (6.7), this implies
that 0} = 0% and 0] = 0~ whereas 0~ = 0. Thus (6.11)’ reduces to definition (3.11)" of
the orbit index @ with no symmetry present.

§6.3 Homotopy invariance

The next proposition formulates homotopy invariance of @ for both finite and infinite cyclic
groups G, though we have not yet defined @ for infinite G. However, with definition 6.4 of ¢
for G = Z o below, the proposition will remain valid and we just postpone the proof in that
case.

............................
...................
. ™
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6.2 Proposition : A
Let G = Z, ,n < oo, f generic with a periodic solution (g, zo(-)), and fix € > 0 small .
enough.

Then for any 0 < 6 < &yle)

Yoo = > e, (6.12)

A=A0—6 A=A0+6

where the sums range over all orbit indices ¢ of periodic solutions (A, z(-)), with the indicated
values of A, which remain in an e-neighborhood of (Ao, z¢(-)). Geometrically, these solutions
are on the branches emanating from (Ag,zo(-)) to the left respectively right. )

Proof (n < 00) :
We study all possible generic secondary bifurcations from (Ag, zo(-)), case by case. Type 0,

turn, and the two pitchforks are easy cases which we handle first. The doubling cases require X
some notational preparation and are tackled afterwards. We treat only flop doubling and 3
flip doubling, since the third case of a flip-flop doubling is equivalent to a flop doubling by by

lemma 5.12. Indeed, interchanging h and A’ there does not affect the orbit indices & because
the spaces £ remain unchanged. Throughout we may assume H = G for the symmetry
(H,K,O) of (Ay,z¢()). Otherwise & = 0, locally, and the proposition holds trivially.

If (Ay,Zo(-)) is type O then the o remain invariant mod 2 as A increases through A¢.
Indeed, o} cannot change by eigenvalues of D¢ F on §;! passing through zero, because (A, z¢)
is type 0. Thus o can change only by conjugate complex pairs of eigenvalues of D¢F on £
becoming real, or vice versa. This does not affect o) mod 2. Hence & is the same to the left
and to the right of the bifurcation orbit and (6.12) holds.

If (Ay, zo(*)) is a turn, then we find a corresponding branch (A(s), £(s, ), p(s)) of solutions
of

F(f,/\(S),f(S,'),p(S))= 0 -
with A(0) = Xy, €(0,¢/p(0)) = z¢(t), such that

D,(0)=0 and vo:= D,E(0,-) ¢ span £(0,).
In particular, differentiation with respect to s yields
DeF(f,2(0),€(0,),p(0)ys = ¢£(0,)
for some real constant ¢. Moreover, H® £(s,-) = £(s, -) implies
vo € £&F.

Thus yy € £} is 2 generalized eigenfunction of D¢F for the Floquet exponent 0, i.e. for the
(nontrivial) critical Floquet multiplier 41 at (Ag,zp). Following the local branch through
(A0,z0), the transverse crossing condition (3.7.6) for the critical Floquet multiplier implies
that 07 changes by 1 at (A, zu). By condition (3.7.a)’, all other oy remain unchanged. Thus
the indices @ have opposite sign at the two periodic solution for A on the one side of A,,. The
sum of @ for A on the other side of Ay is empty (zero). Again (6.12) holds.

If (Ay,zo(")) is any of the pitchfork cases (flip or flip-fiop) thes H < H = G on the
secondary branches, by table 5.2. This implies = 0 on the secondary branches. It is .
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therefore sufficient to show that & remains unchanged along the primary branch. Indeed, one
eigenfunction yo(r) for the critical Floquet multiplier +1 lies in £¥: by virtual symmetry,

proposition 4.3 and corollary 4.6, there exists yo € ker D¢F on £ such that the pair (£, yo)
has symmetry (1-1,1(,9), cf. table 5.2. In particular, yo € span &y and

p(R)yo  # yo(O(h)).

Because the critical nontrivial Floquet multiplier +1 is simple at the pitchforks, we may

conclude
p(h)yo = —yo(O(h))

from equivariance of D F' with respect to H®. Thus yp € €1 as claimed. Therefore ¢
remains unchanged along the primary branch because only oF changes (mod 2), and o7 is
irrelevant for &.

To complete the proof it remains to consider the doubling cases (flop and flip). Their treat-
ment requires some more preparation. For definiteness, we consider the geometric situation
of figure 5.7, first, assuming that the secondary branch (A(s), z(s)) bifurcates to the right
of Ag, i.e. A(s) > Ag. Note that the critical multiplier 4 near —1 on the primary branch
z, yields an eigenfunction of DgF(A, £,) in € if (Ao, 20) is a flop doubling. Again, we use
virtual symmetry and table 5.2 here. Then only o changes by 1, while all other o remain
unchanged, as A increases through A,. In contrast, at a flip doubling ¢ changes by 1 and all
other o remain unchanged. In any case, #(z,) = 0 for A on one side of Ay, while #(z,) # 0
on the other side. Let us assume for the moment that #(z,) # 0 for A < A, near A, again
for definiteness. We postpone comments on the remaining cases to the end of the proof.

Let £, resp. £, denote the rescaled periodic solutions z, resp. z(s).A = A(s) on the
primary resp. seccndary branch with minimal period nermalized te oge, ¢f (6.2.¢) and fig.
6.1

secondary

primary

Fig. 6.1 Doubling thfurcations
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We would like to discuss eigenvalues of
DEF(’\:E) = _;_T + sz(/\,f,\)

following £ = €, for A / Ag on the primary branch and then £ = E,\ along the secondary
branch. Unfortunately p jumps to p = 2p at (Ao, Z),)-

As a remedy we lift £, , A < Ag, to an orbit £, with non-minimal period 1 and minimal
period 1/2, defining )
Ex(r) = &a(27) for A < Ag. (6.13)

By this rescaling, p gets replaced by p := 2p along the primary branch and

- - d .
A = DeFE) = =31+ Def(h,6) (6.14)

now depends continuously (but not differentiably) on A near Ay in the uniform operator
topology of £(C',CY).

To analyze eigenvalues of D¢F (leading to ®(z,,_s)) as well as of D€F-‘ (leading to
®(z(s)), A(s) = Ay + &) we introduce two more spaces which we call 2[,’,' and éb“. Let

“€': thesetofall ye C"(R,X) such that (0.15)
y(r) = y(27) ,forall 7 ¢ R,
for some vy € £p;
é;,',' . the space defined analogously to £ but using

the symmetry (H, K.6)of the secondary brandh
instead of (H, K. 6).

Thus 3£ is the lifted space €' whereas £ is the space "7 associated t the s 110,
symmetry. Likewise let £7(n) dencte the lifted generalized eigenspace £7in; «fa Fi-, .-
exprnent n. and £(n) the generalized eigenspace of n as an eigenvalue of D F oA &0 1 &
Obtwinusly

an

dim zf,f‘(r)) = dim &' (n).

for any n. Note that the spaces £(n) 2 [,f'(n)‘é;f(r/) depend on A because thev refs- 1
i, 6. tx respectively

It is a first benefit of these spaces that an exchange-of-stability formula b Jds il we f
the lifted branch 5) through the bifurcation point fa More precisely

6;' = dim @ f'?lr’) - L dim £'(n) NP EPe
L n>t
remains invariant as A decreases through A Because we have assumed that @7, - o f

A A we have therefore proved homotopy invariance of @ il we can cnly show

1 ol PR =\
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at A = Ag — 8. To achieve this we claim that for any choice of a,b € {+,~} and n € R

dim E(n) = dim [E2mn( @ 2€5)] (6184
a'b'e{+.-}
Gon| @ ) = {lA@ethm  He=t, gy
a' be{+.-} te==

where the sign + in 2€;b(17) is + fora flop and - for a flip. The congruence = here and below
is understood mod 2. Accepting both claims for the moment, we can prove (6.17) as follows.

Summing over # > 0 in (6.18.a,b) we obtain from the above
Gf = Y dim&f(n) = D dim2Ef(n) +dim3E (n)
n>0 n>0
= Z dimél(n) +diméf(n) = of +07, and
n>0
o, = o_ = 0.
Because @(z,,_5) # 0 we also know
U; = o_
Together, this implies (6.17) because
6r+a, = 6f = ol+o] = of+oC
forany b€ {+,-}. It only remains to prove (6.18.a,b).
T. prove (6.18.a) we lift the cylic group H® = {(h,O(h))|h € H} < G x S! to a covering .
Kroup :
H®? = {(h9)29=6(h) (mod Z)} < GxS.
He wise we consider .f,\,f.,\ with A < Ap, the linearization D;,I':'(z\, EA) commutes with the
v ten of HY . Indeed
L DFAE) §) () =
1d . z -
= =3 ARIT =)+ Daf(h s - 9)) p(R)(r - 9)
= D¢F(), &) (5(k, 9)7) (7)
€020 imypaes
Sr M PG -B(R) = 6(21) = &(n).
WU o tinates with [)ef'(,\,f-,\), the eigenspaces fg‘(n) are all invariant under
* H* The rredycible representations of H® all have real dimension either one
< 4* &, - S'iscompact abelian, cf. [Bro&tD, §I1.8]. The representation
e o ’.,.l-.'.,‘ S ™ -.’-.._-‘.):.'_ e '.. ST .‘4-::,)-: 1‘: PR g :."- Y g '~'
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spaces corresponding to real one-dimensinal representats oo O HT e ey
0 a,t . -
284" defined in (6.15) above. Indecd, @' accounts for the w ton fo b o H°

b ! 2

whereas b’ accounts for the action of (h, .,m)

1

plh, 7—)y(1) = p(h)y(2r -

- IR ¢ I R}

1
m

Because all other irreducible representations are two-dimensional, decomposition inte arre
cible representations implies (6.18.a).
We prove (6.18.b) next, separately for a flop and a flip doubling at (A, z..).

Case 1, flop doubling :
Let j € £3(n) A2€%. By table 5.2 we have h = h, (k) = 1/ = 1,2m. Thus
y(r+1) = ay(7)
- - - 1
)y = byt +O(h)) = b3 — ).
p(h)y(r) by(r + O(h)) bu(r + -

by y € fé’(r]) On the other hand g € 252.', ie. g(r) =y(27), y€ é'b’}', implies
1

i(r+3) = a'i(n)
p(h)i(r) = p(R)G(1) = plh)y(2r) =
= Wy2r+O(h) = b'y(27+rln) = b'g(f+2—'r;l-).

~ (l
Comparing the two calculations we immediately observe that £%(n) N 2y = {0} unless
a=1(a)?=+andb=". Ifa=+, b ="V then y is a generalized eigenfunction of
D¢F(2,€,) in lﬁ' with eigenvalue 5, by the usual rescaling argument. Vice versa, any such

-~ ’
eigenfunction y rescales to an element § € £7(n) NZ2€y in that case. Summarizing, we obtain

Ffa a' 2£a'( ) ifa=+ b =b
n 2 ' = b 7 .
& (n)n “&; { {0} otherwise.

This proves (6.18.b).
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1T v [v. ’ by .:
v ooo- ) dy -
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y Wy by - - Btk by(7 ) “
m .
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Outhe e band vy 60 gl Ay’
r
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v aylr cand
plhouis) k)R By \_
()™ y(27 + (K'm + 2)8(h)) 3
! ~
bly(l‘ ﬁikm‘*'z) _
2m r.
1 ! o,
- (,’ y + - — = ,
vir e o+ 3) g
1 o
a't'y(r + =) -~
m S a
N - . r
Thus we conclude this tine that S
o
' o
z ' 254 ifa=+.b=at A
£ m26'11’ :{ 6;, (71) 1 ’ N
() b {0} otherwise. _::
.
Again, this proves (6.13.b). -
The above considerations prove homotopy invariance of the index @ assuming bifurcation ::,'-
to the right of Ay, and @(),z,) # 0 for A < Ag in the doubling cases. Replacing A by -2, -
if necessary, it is actually sufficient to prove homotopy invariance only for those remaining e
doubling bifurcations where #(\,z)) = 0 for A < Ag near Ay and bifurcation still occurs to e
the right, as before. As we have noted before, this implies #(X, z,) # 0 for A > A, because '
only o resp. o_ changes at a flop resp. flip doubling while all other o remain unchanged. ,-».':
Y
In short hand: ¢} changes by 1 while e.g. ai,a; remain unchanged. Again, the sign + -~
is + for a flop and - for a flip. Evaluating all o} at (Ao — §,£,,-5) we thus conclude from A \
P(Ao + 6,Z5,45) # O that A
ot +o3 -"
P(Ao+6,zx,45) = (-1)7+7°F (6.19.a) ¥
Evaluating all 6} at (Ao ~ §, é,\o_g) we obtain from exchange of stability that :i',
W
[
1 T 6F+6- .
S(o+8,2(s) = o ((-1)7FHF 4 (-1)THon) (6.19.6) ’
2 p‘
)'.'
"
as before, with Ag + § = A(s). Because (6.18.a, b) remain valid -
)
Py
51 = ai-{—a;, and »‘-‘
6, = o¢_ = 0. (6.19.c) :-: ‘
still hold. Also, #(Ag — 6,z),-5) = 0 implies Q)
o2
s
®
R
Y

A R L LA L N o L o SALN
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ox = ozt (6.16.d
Froui (6.19.a-d) we finally conclude
. . -
S0+ &2(s)) = (-1 = (-7 =
= ~(—1)":+0; = _¢(/\0+5’IAU+A)-

This completes the proof of homotopy invariance of @ in all generic cases with finite cyclic
symmetry. [J

£6.4 Orbit index # and center index 0

The next proposition relates the orbit index &, defined in (6.11), to the center index .7
at a generic center. Again the formulation is valid for both finite and infinite cyclic groups
G with @ from definitions 6.1 and 6.4. But we postpone definition and proof of the case
G=2Z to 56.6.

Proposition 6.3 :

Let G = Z,,n < oo, [ generic with a generic G-center (Ao, zo) and bifurcating local
branch (A(s),z(s,-)),0 < s < &, of periodic solutions with symmetry (H, K,©) and with
representation r = @ at the center (Mg, zy) (cf. lemma 5.1).

Then for any 0 < s < ¢ the orbit index & satisfies

P(A(s),z(s,)) = B"(Xo,z0)-sign(A(s) —Ao) # O, (6.20)

where 17 (A, z¢) denotes the center index of (Ao, zo) (see definition 2.3).

Proof (n < 00) :

We model the proof in some technical analogy to the prof of the homotopy invariance
proposition 6.2. We consider the case A(s) > Ap of bifurcation to the right, first, postponing
A(s) < Ag to the end of the proof. Rescaling the minimal period p(s) of (A(s), z(s, )) to 1 we
obtain the branch £, of bifurcating periodic solutions

Ex(r) = z(s,7p(s)) with A =A(s) > Ag.
Again, we can extend this branch ¢, € CO(R, X) continuously to A < Ag defining
E,\(T) = I for A< Agnear A\g, TE€ER,

where (), z)) denotes the stationary branch through the generic center (g, zo). The proof
of proposition 6.3 will consist of a careful study of the eigenvalues n of the linearization

.. d -
DeFNE) = -3+ Daf(0 ) (6.14)

as A increases through zero. Here we put

. [p(s) for X =A(s) > Ao,
P =\ 2r/B())  for A< Ao,
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where a(A) ¢ 1,9()) denote the eigetvalues of Dy f(A 2,) near 112(A0), as in (2.3, w.'i
eigenvector yy. Note that DeF(A, €,) depends continucusly on A near A, i the unif pn,
operator topology L(CY, V).

To relate T and @ we define the spaces £ as in (Gv.a, k) with the symmetry (H K. €
(G, K,r) of the bifurcating branch; for @ = r¢f. lemma 5.1. We observe that the linearizat, o
(6.14) maps each space £* into itself. Denoting the sum of nltiplicities of eigenvalues .0
of DF(X,€,) in & by opf = a}(A), to emphasize their dependence on (A, £,), we clain, {1
all 0 < & small enough that

Ay - 8) i x" = 41
o+ 8 = o4 (A ’ 6.21.u
7. Qo+ 8 ot (ho-8)+1 Gl x™ = -1, (6:21.4)
op(do+ &) = oi(rdo—-8) ,forall(a,b) # (4, +) (6.21.4

Here and below, = indicates congruence mod 2. Accepting (6.21.a,4), for the moment, the
relation {6.20) between @ and @ follows, by definitions 2.3 and 6.1 of . and @, once we show
that

U;(’\(l - 6)
U:(/\U - 6)

0 for each b€ {+,-}, (6.22.a)
E"()) . (6.22.8)

il

We still remember, of course, that we consider the case A(s) — Ay > 0. It thus remains to
prove (6.21), (6.22), in that case.

We prove (6.22) first. Because f.,\(T) is G-invariant and independent of 7 for A = Aj—€ < A,
the group G x S! acts on any generalized eigenspace &2 (n) of fo‘(/\, £,). In particular, S!
acts by time shift. But the only irreducible representation of §! with real dimension 1 is
the trivial representation, and all other irreducible representations have real dimension two.
Thus the o, can be obtained mod 2 from the corresponding mulitiplicities of the restriction
of fo‘(,\, é,\) to the spaces

& nX,

where X C é’O(R, X) stands for the constant functions in CY(R, X). But obviously
& NX = {0},
by definition (6.8) of £,~, which proves (6.22.a). It is equally obvious that
DeF(ME) = Dif(Mzy) on €fnXx = X%,

which proves (6.22.5).

We prove (6.21) next. Real pairs of eigenvalues becoming conjugate complex, and vice
versa, does not change any o (mod 2). To prove (6.21) we therefore need to discuss only the
behavior of the critical {algebraically and geometrically) double Floquet exponent 5 = 0 as A
increases through Ag. This Floquet exponent is related to the eigenfunctions associated to the
purely imaginary eigenvalue +if(\o) at the generic center (Ag,zg), cf. (2.4). By the proof
of lemma 5.1, these eigenfunctions of n = 0 belong to the space 51. This proves (6.21.}),

already. To prove (6.21.a) we perturb /\O,UI(/\O) to Ag £ 6, ai()\o £ 6). As ) decreases from
Ap to Ap — 6, i.e. along the stationary branch, the critical Floquet exponent satisfies

et o ol LA
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A Manreasesfrom Aot Ag s & e along the pery et
exponents s simple trivial, n - 0, with eigenfunction
als - suuple, but becomes nonzer and satishes

boan hoone of the tw e oa b ot
(;{ £, The other cnty al exponent v o

siygn sxyn(l);"A(U) D,a(A))) (€21
siyn 1),a(An) x’

by ‘CralRab2 . of also 'Fie2, (1.3).. This is the standard ex hange of statihity ool
local Hopf bifurcation. Remember that D2A(0) > 0, for our case A(s) - A, Now (62
nuplies

a. () Jf x" o+ 1
a.(Ay) 4] AExT L

Gt(Au + (‘) - { (629
Together, (6.23) and (6.25) imply (6.21.a). This proves relation (6.20) between @ and 3. if
Als) 2 Ay for the Lifurcating branch.

In case bifurcation occurs to the left, A(s) < Aq, just replace A by - A, This reflection
in A reverses the signs of A(s) — Ay, of x" and, consequently, of &:" (A, z0). But @ remains
unchanged and (6.20) remains valid. This completes the proof of proposition 6.3.0

§6.5 Proof of theorem 2.7 for finite ¢

With the help of propositions 6.2 and 6.3 above, we can now prove theorem 2.7 on generic
global Hopf bifurcation in the case of finite cyclic symmetry G = Z,. This case will also
serve as a paradigm for G = Z ., later.

Proof of theorem 2.7 (n < o0) :

Recall that we assume G = Z,,n < oo, and that the nonlinearity f is generic G-
equivariant so that theorem 5.2 on generic centers and theorem 5.11 on generic secondary
bifurcation both hold. Moreover we assume

¥io= dpm o # o0 (2.17)

red

for some binary orbit d € D(n), cf. definitions 2.3-2.5.

Similarly to the proof in the case of no symmetry (cf. §3), we define equivariant snakes
S CAx X. Let Z* C A x X be the set containing all G-centers (Ao, zo) with representation
r € d, all periodic solutions (), z(t)) with symmetry (G, K, ©) such that

©®© € d and & # O

for the orbit index & of (), z(-)), and containing in addition the bifurcation orbits from table
5.2. Any maximal connected component of Z* which contains a center is called a snake. If
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beoause, conversely each center with representation v o o hes onasnake, by prop st 6

But (¢.27) contradie ts our assumption (2.17) of nonzers ¥ index Theref 1o a ) bl <t
does existiand theorem 2.7 helds by (6.26).

It reniains te prove our clain that each bounded snake § contains exactly one souroe an!
one sink. lndeed § contains a center (A, 1)), by definition, which we may assune t b
source. Otherwise just replace A by - A, reversing the sign of 0. Locally near any period,
trajectory of type U, we may orient the curve § of periodic trajectories such that

® ) increases {6.2m)

along §. Note that @ is locally constant at such trajectories by homotopy invariance proposi
tion 6.2. Near secondary bifurcations (A®,z}), exactly two of the emanating branches belong
to §, again by homopoty invariance proposition 6.2, and because @ remains in d, cf. cor}-
lary 5.13. Moreover, the orientation ( 6.28) can be e ‘ended consistently through (A*,z} .
The snake § cannot loop back onto a point of itself, by this construction. However, § is
bounded together with its minimal periods. Thus § terminates at another center (A{, z{,).
The orientation (6.28) of the entire snake § makes the source (Ag, zy) the starting point of
$, by proposition 6.3. Again by proposition 6.3, the end point (A}, z;) of the oriented snake
$ then must be a sink, as was claimed above. This completes the proof of theorem 2.7 in
case G = Z,, is a finite cyclic group.O

§6.6 The caseof G=R/Z

We now return to the case of infinite cyclic G = R/Z = Z . First we define an orbit
index @ for concentric and for rotating waves, which in fact coincides with the definition
in the no-symmetry case given by Mallet-Paret & Yorke [M-P&Y2]. Then we show that
propositions 6.2 and 6.3 remain valid for this orbit index and for G = Z,. Finally we prove
theorems 2.6 and 2.7 for that case.

To define the orbit index @ for G = Z o, we recall the operator setting F(f, ), £,p) = 0
for periodic solutions z rescaled to £, cf. (6.2), (6.3). We also recall from (6.5) and (6.6) the
spaces £%, a € {+, -}, given by y(7 + 1) = ay(7), which are invariant under D¢F(f, A, €, p).
Define

a

0®: the number of positive eigenvalues n of D¢ F on €, (6.29)
counting algebraic multiplicities.
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expe ettty Oba oo o unts read mnltiphiers g - Pwhide a0 counts multipliers g - ]
I the case 0 0ot waves, & K &, the orbat index @ alse comvides with the =
syttt "okt o dex o whe bowe obtam f we work s the subspace XN instead wf \ I de s

the ety e st egenvalue poof DeFoon £ C C'(R.X)and on £* CY(R XD

coatsode e 2 dast bserve that CYR, XK) 18 the representation subspace of the trivia!
represontate nof e sabyer ap Koo (0} ~ Z, of G > 81 acting on (~'“(R. X} as usual Al

other representati ns o cur with even dimension in any eigenspace. With this in mind, it s P
new faurhy vasy t peove propositions 6.2, 6.3 and theorems 2.6, 2.7 for G - Z .

Proof of proposition 6.2 ((; - Z . ) :

We consider type 0, turns, and doublings first. Because @ coincides with the orbit index
(3.11) of Mallet-Paret & Yorke by the remarks above, homotopy invariance of @ follows from
M-P&LY2, Chow&M-PEY2).

BT % IR R

Alternatively we may invoke proposition 6.2 for finite G putting G := {0} artificially. That .
is, we ignore all group structure which is actually present. In this perspective the doubling hy
bifurcations for concentric as well as for rotating waves in table 5.2 become flip doublings :
with G = H = K = {0}, m = 1. Any way, homotopy invariance of ¢ holds for type 0, turns
and doublings. ™

It remains to prove homotopy invariance of @ at a freezing (Ao, zo), cf. table 5.2 (b.3). A
From §5.3 we recall the setting (5.2-5.7) and in particular definition 5.3 of a freezing. We N
denote the symmetry of the freezing (Ag,zo) by (G, K,160). We also recall the following 2
expression for the linearized flow W, for the local branch (A, z,) of rotating waves X

D.¥y(f,0zy) = #(1/6) expl—p(aR = D, f(3,zy))) (5.5.b) ‘

' T
where R denotes infinitesimal rotation. Let X* resp. X~ denote the representation subspaces ‘
of the + resp. — representation of the cyclic group K = {0,1/6,...,(6 — 1)/6} on X, i.. Py,
p(1/6) = +id on X*. We transcribe 6% from definition (6.29), (6.30) of the orbit index & “)
into Floquet-multipliers p, i.e. into eigenvalues of D, ¥,. For a,b€ {+,—}, A # Ag let N

6,(A): the number of real eigenvalues p of :
Dzwp(f)’\:z;\)lxb : Xb - Xb : ]
with au > 1, counting algebraic multiplicity. (6.31) 4
. . L

Because K commutes with DV, and all other representation spaces of K except the +,- p
representation spaces have even dimension in any eigenspace if D, ¥, we conclude N
o%(A) = &2(A)+8%(N) (mod 2) Ry,
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3
Therefore b an 4y invarian e of @ across (A7) follows if we canshow forany a b (-0 ) <
f

ant o« 2 small that Ny
Ny

allA ) el A ) (maod 2). (632, ;.
Toopr e 1632 recall fron (5 5.6) and the detiiti o of X! that 3
: . : w
D,¥, = b expp( aR+ Dif(A 1,4)) 4
. ~9
en X' Thus the at(A) for D ¥, remain unchanged (med 2) if we replace D.¥, on X" 4
o’

b erp’ aR + D,f(A.1,).

For A - M. ie fora 0, the only eigenvalue on the unit circle of this operator on X' is the ~
trivial simple eigenvalue b - + 1 with eigenvector Rz,, because the spectruni of Dy f(A.. 1) ::
consists of only a simple eigenvalue zero, cf. (5.7.a). Similarly, there is no eigenvalue on the 2
unit circle when we consider X . This situation persists for A near Ay, by a perturbation RS

argument. Therefore (6.32) holds, and the proof of proposition 6.2 is complete.5 ,
~

Proof of proposition 6.3 (G = Z ) : A
For rotating waves, ® and ©" bs th coincide with the orbit and center index of Mallet-Paret 2
& Yorke M-P&Y2!, evaluated in X. Thus proposition 6.3 follows from [M-P&Y2), see also

{Fie2, lemma 4.3 . Replncmg X by XK the previous two sentences also hold for concentric N
waves. ::'.
Alternatively, we could resort to the proof of proposition 6.3 with G = {0} again as in the '
proof of proposition 6.2 (G = Z ). )
Any way, proposition 6.3 is proved for G = Z . O
Proof of theorem 2.7 (G = Z ) : :,:
With propositions 6.2 and 6.3 being proved for G = Z o, too, the proof of theorem 2.7 A
given in §6.5 for finite G = Z, applies verbatim, replacing n < oo by n = oo. This proves Q
theorem 2.7 for G = Z . O i
~
Proof of theorem 2.6 : r:'_
Again, we employ the proof of theorem 2.7 for finite G = Zy, replacing n < 0o by n = 00 1:::-
This time, however, we call a snake § glchal only if it is unbounded in R x X. If a global )
snake exists we may put Z := § and theorem 2.6 is proved. e
Otherwise, each snake § is bounded. But the minimal period on § may be unbounded. )
From table 5.2(b) we recall that for rotating waves this may occur only at a freezing. Note oS
that & does not change at a freezing, by proposition 6.2. However, 8 does change sign. -:'.“
. Following the oriented bounded snake § from source to sink, as in the proof of theorem 2.7, -;5 (
we can therefore only conclude that "
F\
WAzt = Y o = o. (6.27)' )
redu(-d) f;;
1 enil . . X
Still this is a contradiction to assumption ;{,
¥& + ¥ #o. (2.15) 7
This proves theorem 2.6.0 3
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7. General global theory

£7.1 Outline

The generic theory which we have developed so for suffers from its characteristic but very
restrictive genericity assumption (2.13), cf. theorems 2.6, 2.7 and their proofs in the previous
section. Proving theorems 2.9, 2.10 we dispose of this awful genericity assumption altogetler.
However, the notions of virtual symmetry and virtual period as presented in definition 1.2
and in §4 now gain their full weight.

After a little preparation on elementary set topology we first prove theorem 2.10 and then
theorem 2.9 by generic approximation. Afterwards we prove corollary 2.13 which states that
“everything” also works for analytic semigroups. We use this proof to briefly summarize the
long line of theoretical reasoning which we have pursued so far, and which comes to its end
in this chapter.

§7.2 Convergence of continua

To motivate our excursion into set topology let us recall our basic strategy for a proof of
theorems 2.9 and 2.10, cf. §1.5 and §3.5. We are given a general, not necessarily generic
nonlinearity f € ¥ (see (1.36)) satisfying assumptions (2.20.a-c), in this chapter. We appro-
ximate f by generic nonlinearities g; € ¥, for which we can apply theorems 2.6, 2.7. This
gives us global Hopf bifurcation for g; in form of a continuum Z;. Naively, we would like to

pass to a “limiting continuum”
C = "im"Z

which should provide global Hopf bifurcation for f itself. Because life is not all that simple,
we are forced to some meandering.

Let us define a limit for any sequence S; of subsets of some metric space. Following
Whyburn [Why], we define

limsupS; := {z: z=Ilm z; for some sequence 2, €8t — oo} (7.1)
= ﬂ clos U S,
i0>1 {240

where clos denotes closure.

7.1 Lemma [Why]:
Assume that

(7.2.a) U S; is relatively compact,
(7.2.b) each S; is connected, and
(7.2.c) there exists a converging sequence (2;){2, with z; € S; .

Then lim sup S; is nonempty, compact, and connected.
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Proof :

Obviously lim sup S, is nonempty because it contains lim z;. By [Why, §1.9] lim sup S, is
connected. Being an intersection of closed sets, lim sup S, is closed. By assumption (7.2.2)
it is therefore also compact. This completes the proof.0

§7.3 Proof of theorem 2.10

We are given a cyclic factor Hy/ Ky = Z,, of the group I', and a binary orbit d € D(n)
such that 4
+
NHO-KO # O.

To construct a global continuum € € A x XKo of Hy-centers and periodic solutions of f, we
first construct a sequence (. of ever larger continua for f with the desired virtual symmetries.
Each (; will be bounded,but all (; will contain a common center

zg = (Xo,z0)

of f. For k sufficiently large, Cx will not be contained in the set of centers of f. Rather, C;
will contain some periodic solution with large norm in 4 x XKO, or with large virtual period.

Putting
¢ = U Ck
- k

will then finish the proof.
Let us first fix a large constant ¢y > O throughout the proof such that the following

conditions (7.3.a-¢) all hold.

The set of centers of f in A x X Ko js contained in the open (7.3.0)
ball B., C 4 x X¥° around (0,0) with radius co.

Any purely imaginary eigenvalue 1 at any center of f in (7.3.5)
A x XKo gsatisfies

2rn/lfl < co-

Lemma 4.10 holds for cg, i.e. the set V P(cg) of those cen- (7.3.¢)
ters for which all virtual periods are less than ¢( is dense
in the set of all centers. _
Note that (7.3.a,b) can be satisfied by assumptions (2.20.a,b) on f. For (7.3.c) we need the
analyticity assumption (2.20.c) which enters into lemma 4.10.
To construct Cx, k > ¢g, we choose a generic approximation

f = lim g5 . (7.4)

More precisely, the g; € ¥ are assumed to be generic in the sense of definition 1.3 so that
theorems 2.7, 5.2, and 5.11 hold for the action of the cyclic group

G = Hy/Ky = Z,, n < oo

on XXo, Convergence in (7.4) is understood as uniform C*-convergence on bounded subsets
of A x XKo, Moreover, we may assume that assumptions (2.20.a,b) and likewise (7.3.a,b)
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still hold if we replace f there by g,, for any 1. Indeed, all genericity requirements on g,
concerning centers outside of B, are satisfied automatically if no such centers arise by the
perturbation g¢; of f.

Denoting the global equivariant Hopf index for f resp. g, by )(;;:Ko(f) resp. Ni“f,‘-“(g; ),
this implies that for all 1 > 1, (say, for all 1)

Wil le) = HElp () # 0O : (7.5)

Indeed, g; — f uniformly in C! on the bounded set B;, and, with the above properties
of g;, (7.5) follows from definition 2.8 of )(}‘J;:,Ko' By (2.27), X;:'KO relates to the generic

equivariant Hopf index ¥Z:
Hitgko(9:) = ¥ile) + X %a).
Without loss of generality, we may thus assume that, for all 1,
¥le) # 0. (7.5)

For each g;, theorem 2.7 provides us with a global continuum Z; C 4 x XKo of generic Hy-
centers with representations r € d of Hy/Kg = G, and of periodic solutions with symmetry
(Hy, K,0), K > K,, © € d. Cutting off Z; suitably beyond a ball B; or for minimal periods
> 2k we may elaborate on this continuum as follows. For any 1 and any k > ¢p, we claim that
there exist connected compact sets (“snakes”) §; x C clos(B;) with the following properties
(7.6.a-d):

S; k contains exactly one center (7.6.2)

(’\i: :i) € BCO

of g;, and periodic solutions with symmetry (Hy, K, 8), © €

d;
the minimal periods p of the periodic solution vary conti- (7.6.b)
nuously on §; x, except for possible jumps by a factor 2;

p<2k on S (7.6.c)
one of the following two conditions holds: (7.6.d)

(i) $;x hits the boundary of By or

(ii) there exists a nonempty, compact, connected subset S‘-' k&
S; x and elements (A; x, 2; ), (X x, Z; k) with minimal pe-
riods p,p, such that

<o

4 < 20
k <

2k

p

IA A

and all minimal periods p on §], satisfy

p 2 co.

Indeed, §; ;. are subsets of the global snake Z; which bifurcates from the center (), z;). By
tke generic bifurcation diagrams of theorem 5.11, minimal periods can only jump by factors 2.
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Finally Z, is a global continuum and, by (7.3.6), Z, does contain minimal pericds p € ic.,, 2¢.. .
Thus (7.6.a-d) can be satisfied.
We fix k > ¢, and construct (. Passing to a subsequence of 1, if necessary, we may assume
that
lim (A,z;) = (Aog,z0)

exists. Note that (A, z,) is a center of f. As in (7.1) we define

Cr = limsup§;,. (7.7)

Note that all elements of C; have the virtual symmetry properties desired for {. Indeed,
this follows from virtual symmetry corollary 4.6 together with §; x C closB8; and boundedness
condition (7.6.c).

We claim that Cy is compact and connected. We apply lemma 7.1. Assumptions (7.2.6, c)
hold by construction. Trivially (J; §; x C closBy, being bounded, is relatively compact. Thus
Ci is compact and connected.

Next we claim that Cj is not contained in the set of centers of f, for k > ko > ¢¢ large
enough. We have to consider two cases.

Case 1 (7.6.d) - (1) is satisfied for a sequence i; — oo (which may depend on k).
Then Cj hits the boundary of By, but this boundary does not contain any centers of f, by
(7.3.a) and & > ¢g.

Case 2 (7.6.d) - (ii) holds for all ¢ > ig(k).
We give an indirect argument: suppose Cj consists only of centers. Discussing the virtual
periods on (; we will obtain a contradiction. Replacing ¢ by a subsequence, if necessary, we

may assume that (A;;,Z; x) converge for ¢ — co. By lemma 7.1 again,

0 # C = limsu'psi"k c Ck
H

is connected and consists of centers of f, only. Because all centers lie on one-dimensional
branches, by assumptions (2.20.a, b), the set C;c may be viewed as an interval. Now note that

Ck N VP(cg) = 0

because any element of C} has some virtual period > co by construction of €}, and by corollary
4.6 on virtual periods. The set V P(cp) was defined in (4.18). Because V P(cg) is dense in
the set of centers, by lemma 4.10, the interval C} therefore consists of only one single center
(Apsz). Here we use our analyticity assumption (2.20.c). By (7.6.b) and (7.6.d)-(i1), any
interval [t, 2] C [co, 2k] contains at least one virtual period of (A, zp). Thus (Af,zf) has at
least 2 different virtual periods provided that

2% < 2k < 2k.

We derive a contradiction to lemma 4.8. Let jo be a uniform bound for the number of
different pairs of purely imaginary eigenvalues at centers of f. By lemma 4.8, (A}, z{) has
then less than 2o distinct virtual periods, contradicting the above. Therefore, C} C Cj does
not consists only of centers. This closes case 2.
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Finally, we define the continuum

k>kg

Note that ( is connected since the (4 are and since (Ay, zy) € Ck, for all k. Following the
reasoning in cases 1,2 above we see that for any k > kg there exists a nonstationary periodic
solution (A, z) € C such that |{(A, z)| = k, or such that a virtual period of (A, z) is > 2~ Pk,
Thus C is indeed global. Recalling that all solutions in € have the desired virtual symmetries
completes the proof of theorem 2.10. O

7.2 Remark :

We observe that analyticity assumption (2.20.c) can be dropped in theorem 2.10 if the set
of Hy-centers in XK¢ is known to be discrete. Obviously, the above proof goes through in
that case.

§7.4 Proof of theorem 2.9

With the proper modifications the proof follows the same scheme as the preceding proof of
theorem 2.10. We construct a sequence of ever larger bounded continua Cx with a common
center (Ap, 2y) and define

o = U Ck )
k

again. The main difference lies in the treatment of (virtual) period. Recall from §5.3 and in
particular from (5.7) that z is on a rotating resp. frozen wave iff

—aRz+f(Az) = 0, Rz#0, (7.8)

for some a # 0 resp. a = 0. Here R is the infinitesimal generator of Hy/Ky = Z » on X Ko,
Also recall that for a rotating wave

a = (6p)7',

where p is the minimal period and (Hy, K,0), K > Ky, is the symmetry, as usual. The
analogous statements hold with f replaced by g,, of course.
By assumption (2.20.0), again, we may fix a large constant ¢y > 0 such that

the set of centers of f in 4 x XX0 is contained in the open (7.9)
ball 8., C 4 x XK¢ around (0,0) with radius co.

Further we choose an approximation
f = limyg

by generic g¢;, as in the proof of theorem 2.10, such that (2.20.a,}) hold for g; as well. By
uniform C!-convergence on bounded sets, this implies

Niorol0) = Hiox,(N) # 0
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for 1 > 1 (say for all 1), and hence X3(g) # 0 without loss of generality.

Cutting off the global continuum Z; which theorem 2.6 provides for any g;, we find a
compact connected set (“snake”) S, x C clos(By), for each ¢ and k > ko > ¢ large enough,
with the following properties (7.10.a-c):

S; x contains exactly one center (7.10.a)

(hirz) € B,

and rotating or frozen waves, with symmetry (Hp, K, 6) or
(H0|Kvi9), K > KO; 6c d;

la] < k and |6] < 2k on §; 4 for a as in (7.8); (7.10.5)

one of the following two conditions holds: (7.10.c)
(i) S;x hits the boundary of B, or
(i) S;x contains a rotating or frozen wave (X;x,Z; x) with
symmetry (Ho, K;x 6;k) or (Ho,Kix,£6;x), Kix 2
Ky, such that |6, x| €dn{k+1,k+2,-- -2k} .

Indeed, S, x are subsets of the global snake Z; which bifurcates from the center ();, z;). We
choose i, k large enough so that (7.10.a) and (7.10.b) do not contradict each other. For (7.10.c)
we use that Z; is unbounded. Note that dn{k +1,---,2k} consists of exactly one element.
Hence |6; x| is independent of 1 and, passing to a subsequence, we may assume

LN e

6, =: 6, > 0.
1
Likewise K;x =: K is independent of k. We need the bounds (7.10.5) to construct limits ‘.f
Ck, applying virtual symmetry corollary 4.6. We need (7.10.c) to make C = {J () global. %
Conditions (7.10.a-c) are analogous to conditions (7.6.a-d) from the proof of theorem 2.10. 0:::
Assuming again that A
lim (Xg, 7;) = (X0, z0)

exists we obtain compact connected sets n

. !
Ck = hm s"‘k, ‘\‘

$=—+00 »
as before. By the second part of virtual symmetry corollary 4.6, C; consists of rotating )
or frozen waves and of centers with the desired virtual symmetry properties. This uses ;::\
S; x C clos By and the bounds (7.10.b). Note that case (4.9.d) cannot occur because stationary )
solutions of f in X# are nondegenerate if linearized in X*, by assumption (2.20.a). \:_":
We show indirectly that :

¢ = U Ck ::-

k2ko ~
-
is unbounded in 4 x X¥o, Suppose C is bounded. Then §; satisfies case (if) of (7.10.c) : :
for all but finitely many i, provided that k is fixed large enough. Thus (X;x, ;) exists, ” -
satisfying _ N
~aikRZik + 9i(AiksZix) = 0 o
g
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with a; 4 = 0 (frozen wave), or with a; 4 = (p; x0x)~! (rotating wave). Passing to a subse-
quence, if necessary, we may assume that

(aky Ak, Zk)  i= lim (o Aiks Zik)
1— 00
exists, satisfying _
—axRIx+ f(Mk,Zx) = O. (7.11)
Because (Ax,Z) € Cx and € = {J € is assumed bounded, we may even assume that
(X) i) = lim(xki fk)

exists. Moreover

lim o, = 0,

1 =00

because o x = (p;‘kék)_l ,0r > k, and because there exists a uniform lower bound on
minimal periods p; x on bounded subsets of 4 x X, which depends only on a uniform bound
for the Lipschitz constants of the g;. Thus f(},z) = 0.

Suppose that
Rz, # 0  for k large enough. (7.12)
Multiplying (7.11) by |RZx| "' R and denoting |RZx|"!RZ; by g we then obtain from (7.11)
the linearization ~
—apRs + Do f(Mks Zk)ok = O. (7.13)
Choosing a convergent subsequence
g = lmg € X\{0)
we conclude that _
D.f (’\’ E)g = 0,
because lim oy = 0. Because (X, Z) is a stationary solution of f, this contradicts the nonde-
generacy assumption (2.20.a).
Thus C is unbounded provided that(7.12) holds. Now suppose (7.12) does not hold, i.e.
Rz, = 0  for arbitrarily large k.
Then z; € X H is not a rotating or frozen wave but, by virtual symmetry corollary 4.6,
(Ax,Zk) is a center with some virtual symmetry at least (Ho, Ki, 6;x). As usual, this implies
that some virtual symmetry (Hy, Ki, 6)) of (A, Zj) satisfies
K kNHy = K k-
Now lemma 4.8 on virtual symmetries of centers implies that
Rk = f{kﬂHo < K;jnH,
where K; = I(,, , ) for some eigenvector y; as in lemma 4.8. On the other hand
B = (6l > k. (7.14)
Because the set of all H-centers is compact, cf. (2.20.b), and because the total multiplicity
of purely imaginary eigenvalues is finite at any fixed center, (7.14) is impossible if we choose
k large enough.
By this final contradiction, C is indeed unbounded and the proof is complete.n
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§7.5 Proof of corollary 2.13

We briefly summarize the modifications which are necessary to prove theorems 2.6, 2.7,
2.9, 2.10 for an analytic semigroup setting with (2.32.a-d). Mainly we use that compactness
of the resolvent induces compactness of the semiflow.

In the proof of virtual symmetry corollary 4.6, we construct the Fredholm operators F;

slightly differently from (4.1):

1d -1
R —er (R2-a00) A0

As spaces we take & = &' := C'O(R, X). Note that we may assume the resolvent
1d
—— — A
(-5 — A

to exist. The resolvent is compact, hence F; is indeed Fredholm.

The local bifurcation theory of §5 remains unchanged in the semigroup setting. For a proof
of genericity (§10) in the case of no symmetry see |Fie2]. The details for the symmetry case
can be completed along those lines, following §10. In particular, the transversality theorem
10.2 is already adapted to this treatment.

Using Floquet theory in the semigroup setting, our construction of the equivariant orbit
index @, its homotopy invariance, and its relation to the center index ) given in §6 remain
unchanged: these are all local considerations based on the results of §5. Because this esta-
blishes the same generic global pictures as in the finite dimensional case, the generic global
theorems 2.6 and 2.7 can be proved as in §6.

The first modification in §7 concerns the proof of the compactness assumption (7.2.a) of
lemma 7.1 on the sets S; := §;x. But this follows because, for g; — f, the set of points
on periodic or stationary solutions in some fixed ball B, is relatively compact, again by
compactness of the semiflow. The second modification concerns the limit § = lim g in the
proof of theorem 2.9, cf. (7.13). In the semigroup case we obtain

—o R+ AQW)gx + Df(AZ)9x = O, (7.13)'
instead of (7.13). Equivalently,
-9k = APk) Y~oxRGx + Dzf(Ax,Zk)5k)

is a relatively compact sequence by compactness of the resolvent A(Xx)~1. Thus we may pass
to the limit § and conclude

AQ)§ + D.f\z)y = O
at the stationary solution (X, £):

ANz + f(A,z) = o.

This contradicts the nondegeneracy of (A,z) as in the earlier proof of theorem 2.9. With
these remarks, corollary 2.13 is proved.O
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;8. Applications

§8.1 Outline .0

We illustrate our main theorems 2.9 and 2.10 for rotating and discrete waves with a pro-
totypical example: reaction diffusion systems with Brusselator kinetics, [Nic&Pri]. First
we consider a ring of n identical well-stirred Brusselator cells which are coupled symme-
q trically by diffusion along the sides of an n-gon, cf. §8.2. Such “Turing rings” [Tu] have
attracted considerable interest from both the experimental and the mathematical point
of view, see e.g. {Ale3, Aled, Ale&Au2, Aro&Doe&Oth, Ash&Oth, Cro&Field, Go&St3,
Schr& Hol&Kub&Marek, Schr&Marek1 2 Stu&cMarek, Swi]. Below we nse the D, (dihedral) ¢
symmetry at such systems to find global continua of discrete waves. Local bifurcation is ]
studied extensively in [Go&:St3, God:Sch&cSt, Swi]. We compare our global results to those
of Alexander & Auchmuty [Ale&zAu2]. As a second example, we consider the Brusselator :
system with diffusion in a three-dimensional ball, i.e. under O(3) symmetry. We find global ]
bifurcation of rotating waves, and of discrete waves with tetrabedral symmetry. Local bifur-
cation with such symmetry, among others, is analyzed thoroughly in {Go&:Sch&St, God&:St1].

‘The tetrahedral waves have not yet been observed experimentally, to our knowledge.

Admittedly the Brusselator is not the most realistic model for the Belousov-Zhabotinskii on
reaction, and one might prefer other models (Oregonator, FKN-model etc.) to compare .
with experiments, aee eg. [Field, Tyl, Ty2]. We choose the Brusselator as the simplest .
prototype, expecting similar waves but possibly different stability properties for other models. .
We conclude this section in §8.4 with further examples (hypercycle, graphs of oscillators,
heterogeneous catalysis, fluid dynamics) which are amenable to our theory. We only sketch
these applications phenomenologically, omitting any technical details.

§8.2 Coupled cscillators
The n-gon of diffusively coupled Brosselators is given by ihe following differential equations:
£y = oH(zipas—2a+zi1a) + filzia,Tia) 3
Az;0 = az(z,-_,,u —2z;,9+ I.'_u) + fz(zu,z,-.z) (8.1-1) K
. . [
for 1 (mod n), or in more condensed form :
10\ | - ,
(33)s = @da+ iz, (&.1) :
Here z; = (z;,,%; 5) € R xR is the concentration vector in the i-th cell, z = (x),...,2q) € N

2
R",

CML

(8z); = =zyyy—25+3y

. »
o e

is the “discretived Laplacian® decribing diffusive coupling between neighboring celis and o® >
0 is a coupling constant. The Bruaselator kinetics "
flu,w) = (1, J2)(e1,%2)
is given by
ffe,m) = 1-(b+Du+wjuy :
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Y
2 o
fao(upuz) = bup—ujuy . : (8.2) o
~
Finally, A > 0 is a real parameter describing essentially a quotient of diffusivities for z; ; and N
z; 9 . By definition of A, all stationary solutions of system (8.1) are independent of A\. Thus
any stationary solution z gives rise to a “trivial branch” A — (A, z) of stationary solutions. ¥4
In particular, there is a unique "
homogeneous stationary solution z0 = (z?, ...,22), i.e. a stationary solution with z{ = :"
-+ = £9. This solution is given by -
2= =128 =(1,b). (8.3) E-‘r
The associated trivial branch is ~ -
A (), 29). ot
Before going into Dp-equivariance of system (8.1), let us briefly analyze the eigenvalues u Py
of the linearization L of (8.1) at this homogeneous stationary solution (A, z0). This linear o
analysis is quite similar to Turing’s, cf. {Tu]. Note that z € € is an eigenvalue of L if and o
only if for some 4 5 € spec(—aZA) -:
10 . -3
det {u 0 +u;-td—B = 0. (8.4) ’:
Here spec(—a?A) denotes the set of real eigenvalues of o
i 0
—02A ~: R2n_' R2n’ 8
and B is the linearization of f .'::':'
“~
b—-1 1 - s
B = ( _b —l) = Duf(1,b). -."
In fact the algebraic multiplicity of an eigenvalue p of L equals the sum of algebraic multipli- ;
cities of p as a solution of (8.4), summing over those p ; € spec(—a? A) for which (8.4) holds. X Y
Indeed a®A commutes with the linearization of the nonlinear part of (8.1) at zg, which is a Y
block diagonal matrix with n identical 2 x 2 blocks B. This proves the above claims. ‘
Writing out the characteristic equation (8.4) explicitly, we obtain »
g 't
M+ ((Bg+1-02 + (pz+1))p + (uz+1/pz+2~bpy = 0. (8.5) )
X
N

Thus (), z0) is a center if and only if

o~

s +1
A= 4T 5 0 and (8.6.) ,

b—1-py ~

(g +1/pz+2-buz; > O. (8.6.5) E

At each such center, the purely imaginary pair (), 2(A) crosses the imaginary axis from left :
to right as A increases because X
Y
d pi+1 =

D Re p()) = 203 > 0. (8.7) N
-, \

a
@
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With this elementary eigenvalue analysis in mind, let us now consider the symmetry aspect
of system (8.1). The dihedral group D, is generated by a rotation ¥ and a reflection x such
that

(6) z,
(x) 2 {8.8)
&l = 971,

cf. e.g. [Ser, §5.3]. Equation (8.1) is equivariant with respect to the representation p of
I := D,, acting on x = (z;,-- -, Zn) € B®" by

¥ = =
i(mod n). (8.9)
(r(r)z); = =z
To find discrete waves in system (8.1) we apply theorem 2.10. Asa cyclic factor Hy/Ko = Z,,
of I' = D,, we take Hy == {¥) = Z,, and Kp = {id}. Then we choose some binary orbit
de€D(n), dC Z/nZ, ci. definition 2.4. Let r € dU {(—d) denote an element which ie closest

to 0 (putting r = O in case d = {0}). We claim that all assumptions of theorem 2.10 are
satisfied 11 the coefficients a® and b in system {B.1) are chosen such ttiat

I+ArEIT/R) < b < 4. (8.10)

Let us first check assumptions (2.20.a-c). Note that 4 = (0,00) here, X = R>",and XHo =
{(Z1,-+-+%n) | Ty =---= 2 € 3} is the set of homogeneous states z € X. In XHo there

exists a unique stationary branch (A 29), of. [8.3). This branch has only nonzero eigenvalues
by the characteristic equation {8.5), becansz condition (£.13) implic.

. ‘Lx‘; <+ ‘l‘!ga-#- *.—- b.)_ua > (4 - b'\{l‘; >
in case ¢ 3 > 0, whereas in case ¢ ; = 0 we have
(wz+1/pz+2—-b)p; = 1 > 0.
The set of centers in Ax XH¢ is bounded since A, defined by (8.6.a), s positive for only finitely
many p ;. Analytic dependence of ihe linearization on A is obvious, 5o that assumptions
(2.20.a-c) indeed hold.
It remains to check the comdition

(2.28)

on the global equivariant Hopf index ¥. Writing out ¥ as in definition 2.8, we obtain

Wy, = D%0) Y X (8.11)
JEdU(~d)

where the net crossing numbers x;, are evalnated for A € (0, co) instead of A € (0o, 00), cf.
(2.24) and remark 2.11. By (8.7), eigenvalues 4 ca» cross the imaginary axis only from left
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to right as A increases. Hence the x‘('; are all nonnegative, and x‘(’; is positive if any center
with representation j occurs at all. We claim

xo > O; (8.12)

then ¥ # 0 is immediate. To find a center with representation r of Hy = (¥) = Z, we
decompose XK0 = X = R?" into representation subspaces

X = ({) X;

0<j<n/2

as in (2.22). Using e.g. Ser, §2.6] we find that X is spanned by the real and imaginary parts
of the vectors N
Zezp(—Zwikr/n) eky » =12, (8.13)
k=1
with e, denoting the unit vectors in R?". A short calculation shows that the restriction to

X, of :
—a?A = —a*(p(8)7! —2-id + p(9))

acts as multiplication by the eigenvalue
. = 4 202
bz = 4a®sin®(7r/n). (8.14)

Going back to condition (8.6.a) for a center, we obtain indeed a center with A > 0 in the
representation space X, because

b-1-p,; = b—1-4a®sin®(xr/n) > 0

by rvndition (8.10) on a? and b. This proves that X0 > 0 (and in fact xj, = 2 if r # 0,n/2).
Cuusequently
+d
X Hoko 7 0.
Thus theorem 2.10 applies to the ring of n coupled Brusselators and we obtain a global

continuum

CC(0,00)x X
of discrete waves. We claim that theorem 2.10 actually controls virtual symmetry on € to be
given precisely (not just “at least”) by

(Ho,K,08), 6 cdu(-d),

in case d # {0}. Indeed suppose that (Hy, K, ©) extends to a larger symmetry (fi, f(,é).
Then necessarily H = D, = T, because I itself is the only group strictly containing Hj.
Because H/K is cyclic, this implies K > Z, = Hy. Hence K = KN Hy = Hy, ie. 6 =
0, d = {0}, which proves the above claim. Periodic solutions with © = 0 are homogeneous

zi(t) =...=zx(t).

Their symmetry is given by
(Dn, Dp,0).
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Let us return to a nonhomogeneous periodic solution z(t) with virtual symmetry (Hy, K, 6),
© # 0. Assume z(t) has no virtual period except for the minimal period itself. Then
(Hy, K,0) is the symmetry of z(t), by lemma 4.11. In particular this holds if z(¢) is hy-
perbolic. Here we have reached our goal, set up in question (1.7): we have found periodic
solutions with prescribed symmetry, in a global sense.

In accordance with remark 2.11 we note that the continuum ( is also called global if it stays
bounded and just extends to arbitrarily small values of A > 0. For system (8.1), however,
this phenomenon should not occur. We sketch a reason. If A > 0 is very small, then z(t)
rapidly approaches the set

z?,lzi,Z = bz, forall 0<t<n,

to within a small distance (use e.g. [Hopp]). Afterwards, the dynamics is equivalent to that
of
By o= o¥(ziiga 2%y 4 Zia) + 1 -0

which tends to equilibrium z = z®. Therefore C is unbounded, or contains arbitrarily large

virtual periods. \
As a very concrete example we pick n = 1986 = 2 - 3 - 331. How many global equivariant )

Hopf indices Nﬁ:.h’o do we get for Hy = Z, and Ky = {id}? Equivalently: how many

different sets d U (—d) occur? At the end of §2.3 we have found

|D(n)] = 24 for n = 1986 .

Observing that d = —d for any d € D(n), we thus obtain 24, possibly different, global
equivariant Hopf indices for 1986.

Let us compare this example, at least phenomenologically, to the result of Alexander &
Auchmuty [Ale& Au2| mentioned in §1.2. For a more in-depth discussion see §9.4. Alexan- ]
der & Auchmuty assume some “oddness” for x,, roughly, and obtain global continua (in a :
somewhat different sense) of periodic solutions (A, z(t), §) with

zia(t) = =(t+(/n)-§), (8.15) ;

where § = kp is some multiple of the unknown minimal period p of z(t). Identifying Hy with \
Z,, via ¥ = 1/n such solutions have symmetry (Hy, K, 8), in our notation, with )

6 = -k (mod n) (8.16) .
because N
zi(t + (ki/n)p) = zi(t) = (p(1/n) z(t-(6/n)p) i1 =

= z(t- (6/n)p). .

S

For example, pick some [ which is relatively prime to n. Because Alexander & Auchmuty :
have no control on the minimal periods p of the solutions, k may be anything. In particular, .
O can be anything, by (8.16). In contrast, we have some control over © as we have illustrated N
with the 24 different Hopf indices for n = 1986. On the other hand, if n is a prime number )
with maximal multiplicative order of 2, g
ord,(2) = n-1, y

4
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! then |D(n)| = 2 and we do not gain much more control over € than Alexander & Auchmuty
D have already. This is expected to happen for about 37% of all prime numbers by Artin’s
| conjecture [Sha, §32]. In these “worst” cases, our condition ¥ # 0 is only slightly better than
a condition like ¥ odd.

Picking Hy = Z, < Dy, so far, we have not encountered reflection invariant waves like
H = K = (), or {¢#«}), which are sometimes called standing waves. In that case, our global
results are much weaker, and are more reminiscent of symmetries in stationary bifurcation.
In fact, such waves can bifurcate into H = (k), K = {id} through a flop, cf. §5. And if
H = K = (), then the actual virtual symmetry may be much bigger than )ust ({x,), (%}, 0).
For example it might be given by

(Dﬁ) Dﬁro) ’

where 7 is a divisor of n. Spreading some optimism: a generic theory for global Dy-equivariant
Hopf bifurcation seems feasible and might help here.

We conclude our discussion of Turing rings with a quote from Turing’s original paper [Ty,
§131], written in 1951. The term “wave” theory basically stands for his analysis of the
linearized equations:

The “wave” theory which has been developed here depends essentially on the assumption
that the reaction rates are linear functions of the concentrations, an assumption which is
justifiable in the case of a system just beginning to leave a homogeneous condition. Such
systems certainly have a special interest as giving the first appearance of a pattern, but they
are the exception rather than the rule. Most of an organism, most of the time, is developing
from one pattern into. another, rather than from homogeneity into a pattern. One would
like to be able to follow this more general process mathematically also. The difficulties are,
however, such that one cannot hope to have any very embracing theory of such processes,
beyond the statement of the equations. It might be possible, however, to treat a few particular
cases in detail with the aid of a digital computer.

§8.3 Reaction diffusion system

A Brusselator reaction diffusion system with O(3) symmetry is given by

((l)g):rt oAz + f(z), (¢ en)
dz = O (€ € a.ﬂ)

(8.17)

Here the domain {2 denotes the unit ball in R3, z = z(t,€) = (z1,22)(t, £) € Rt x R* are
concentrations, f(z) is the Brusselator kinetics (8.2), A > 0 is a real parameter describing
essentially a quotient of diffusivities for z; and z3 and a® > 0 is a diffusion constant. By
standard theory [Hen|, assumptions (2.32.a,b) are satisfied on the Sobolev space

X = H*N)x H¥)

Therefore (8.17) generates an analytic semigroup on X and, by corollary 2.13, we may apply
theorems 2.9 and 2.10 to this reaction diffusion system, once conditions (2.32.c,d) on the
group action are checked.
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As before, we note that the stationary solutions are independent of the parameter A > 0.
In particular, there is a unique homogeneous, i.e. ¢- independent, stationary solution

2 = (1,b) (8.18)

with associated trivial branch (A, z°). This is due to Neumann boundary conditions. The
linearized stability analysis along the trivial branch now proceeds verbatim as in the cou-
pled oscillator case, i.e. equations (8.4)-(8.7) remain valid, if we just replace ki by pa €

spec(—a2 A) everywhere. Indeed we obtain (8.17) from (8.1) if we just replace the discretized
Laplacian A by A with Neumann boundary conditions.
Let us now consider the symmetry aspect of the reaction diffusion system (8.17). The

system is equivariant with respect to the representation p of I' = O(3) on z € X given by

(e(mz)(§) = =z(v7'¢). (8.19)

Indeed A4 with Neumann boundary conditions on the unit ball 2 commutes with this repre-
sentation, and so does the nonlinearity f. Therefore equivariance assumption (2.32.c) holds.
For a general background on A, spherical harmonics, representations of O(3) and local bi-
furcations we refer to [Go&Sch&St, Go&St1, Thr&Go, Smo& Was3, Van5]. Taking a ball as
the domain f2 provides a special case of an axisymmetric domain. Global Hopf bifurcation
for axisymmetric domains (rotating and frozen waves) was treated by Alexander & Auchmuty
[Ale& Aul], and we comment on their results at the end of §8.3.1. For a numerical simulation
in a disc see |[Ern&H-K|. For another example on the circle see [Doe&Ker2].

8.3.1.  Let us try to find rotating waves in system (8.17). We need a cyclic factor
Hy/Ko=Z = R/Z of I' = O(3). Such a factor is given by Hy = SO(2) and K, = {id}.
We postpone a discussion of other choices of Hy, Ko, for the moment. Note that R is given
by an expression

Rz = 2n(=€2-0¢,z +  £10¢,7),

in suitable coordinates £ = (£, €2, &3). Thus R : X, — X is bounded if we pick w > 1/2. In
other words, assumption (2.32.d) holds and theorem 2.9 can be applied.
We select any nonzero binary orbit d € D(o0), cf. table 2.2:

d = {2r|0<j<oo}, rodd. (8.20)
Let u’y denote the smallest eigenvalue of the radial boundary value problem

u"(R) + %u'(R) - '('R+2 DuR) = - uyu(®)

u'(0) = W'(1) = o (8.21)

Note that (/-u", is the first positive maximum of the spherical Bessel funcion j, see
[Abramé&Ste, ch.10]. We claim that all assumptions of theorem 2.9 are satisfied if the coeffi-
cients a® and b in system (8.17) are such that

1+a%), < b < 4. (8.22)

Checking assumption (2.20.a) we immediately notice a pitfall. Even X' = X?(3) may contain
many stationary solutions, possibly degenerate, besides the trivial branch (A,z°) of homo-

eneous stationary solutions. Indeed any radial solution lies in X7, and any axisymmetric
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solution lies in X5012), up to conjugacy. So we will follow remark 2.11 and apply theorem
2.9 only in the subset Y of A x X which has all axisymmetric stationary solution branches
removed, except for the trivial branch (), z°) itself. Then assumption (2.20.a) holds, as in
the Dy, case. Similarly assumption (2.20.5) persists to hold for the reaction diffusion system
(8.17).

Again it only remains to check the condition

N S # 0 (2.28)

on the global equivariant Hopf index (definition 2.8). By the same reasoning as in the D,
case it is sufficient to show that some center with the nontrivial representation r of SO(2)
occurs. In the light of our assumption (8.22) and of condition (8.6.a) for a center it is therefore
sufficient to show that

pa = azpz € spec(—a’ A), and (8.23.a)
the representation r of SO(2) occurs in the eigenspace of (8.23.b)
Ba -

Writing out A in spherical coordinates (8.23.a) is immediate. Moreover, the representation
of O(3) on the eigenspace of u4 comes from the representation of O(3) on the space V,
of spherical harmonics of degree r; dim V, = 2r + 1. Of course, SO(2) acts on V,. The
decomposition of V, into irreducible representations of SO(2) is given by

Vo = WoeoW,e...0W, (8.24)

wheredim Wy = 1, dim W, = 2 for k > 0. This is the Cartan decomposition of the irreducible
representation V; of O(3) for the maximal torus SO(2). Knowing spherical harmonics, this
decomposition can be obtained explicitly; see e.g. [Bro&tD, §I1.10, Go&Sch&St, §XIII]. In
the decomposition (8.24), the group SO(2) acts by representation k on Wi. Putting k =
this proves (8.23.b), and hence ¥ is nonzero.

Thus theorem 2.9 applies to the Brusselator system (8.17) in the unit ball and we obtain
a global continuum

C C Y C (0,00)xX

of rotating and frozen waves. Note that C might terminate at a nonhomogeneous asisymmetric
stationary solution because such solutions are not contained in . By theorem 2.9 the only
other possibility is that C is unbounded in 4 x X. In fact we do not expect C to extend down
to A = 0, by the same reasoning as in §8.2. Note that our solutions have virtual symmetry

at least )
(50(2), K,8), 6 =12'r forsome j. (8.25)

Solutions with such symmetry may be visualized as rotating or frozen spiral waves with 27 - r
arms. Strictly speaking, however, our symmetry analysis does not distinguish spirals from
other geometric objects. Also, we only count identical arms as contributing to 27 - r: the
symmetry point of view may amount to a “numerical arms reduction”. Agladze & Krinsky
[Agl&Kri] have created spiral waves with 1 to 4 arms in a Belousov-Zhabotinsky reaction,
experimentally. They use a setting with O(2) geometry, which could be treated analogously
to the above lines. However, these spirals do not seem to appear in a rigidly rotating fashion
- we comment on a possible explanation in §9. Numerical simulations showing several arms
were performed by Rovinsky [Rov|, unfortunately in a Dy geometry (2 is a square) which

[ T R e S I [AFCe
. - \\'\-' A%
Ly " ‘."- .” "r“th_{ﬂ ’an;_

O TR T

e

3

BN o I

-l

A St st



] S 8.8 Lab ¥ o8 gt ¥ gl el sah tal sed Ful Ve wal val val val tat taloval tal Vg, gea A%a ata 4% YA YRYREY

-102 -

4 somewhat resists a rotating wave analysis. For further discussion see the survey [Win] by
Y Winfree. '
Can the symmetry _

(So(2),K,8), 6 =+2r (8.25)

extend to a larger virtual symmetry? Let ZJ := {id,~id} < O(3). Then the symmetry :

above could extend to
(Z;@SO(Z),Z%&;K,O) (8.26) D

in the obvious way. This extension corresponds to solutions z with

z(t, ) = =z(t,—¢). 3

Checking a list of subgroups of O(3), cf. e.g. [Ihr&Go,theorem 2.8, Go&Sch&St,§XIII|, we
see that (8.25), (8.26) with K finite exhaust all possibilities for Z o, factors in O(3), up to
conjugacy. Thus (8.26) cannot be extended if © # 0, and (8.26) is the only possible extension
of (8.25). Picking Hy = Z5 ® 50(2), Ko = Z% we can proceed analogously to the above
discussion to obtain rotating waves with virtual symmetry (8.26). We only bave to replace
condition (8.22) by the slightly stronger version

(r+1 -
H 1+a2p£)<b<4,

because —id € O(3) acts as (—1)" on V, when r is odd, while —id € O(3) acts trivially on
V,4+1- Let us also recall again that the word “virtual” can be dropped e.g. for hyperbolic
rotating waves, by lemma 4.11. ¢

Comparing our results to those of Alexander & Auchmuty [Ale& Aul], our remarks of §8.2
still apply. Analogously to §5.3, they solve K

—aRz+ A(X)z+ f(\,z)=0 (5.3)

and obtain a global continuum of triples (a, A, z) under some “oddness” condition on the
crossing numbers x,. This yields rotating, frozen, or concentric waves - but no control on
6. At the expense of introducing virtual symmetry we can recover and extend their result.

8.3.2. Next we turn to tetrahedral waves. We choose Hyo = Z5® T and Ko = Z3 & .
D;. Here T < SO(3), called the tetrahedral group, describes the symmetry of a regular N
tetrahedron ( T = A4 is the group of even permutations of 4 elements given by the vertices
of the tetrahedron). It contains Do which consists of rotations over m around the three axes
joining opposite mid-edges of the tetrabedron (D; = Z2 & Z2 is the Klein 4-group). We

note that
HO/KO ~ Zs \,,
N )
is cyclic. For a reference see {Ihr&Go, Go&St1]. In [Go&St1] local Hopf bifurcation with y
tetrahedral symmetry was observed for the first time. N

We pick the nonzero binary orbit
d = {1} € D@ N
and assume that condition (8.22) holds for r = 2, i.e.

143 < b < 4. (8.22)"
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:' As usual, conditions (2.20.a-c) then hold with 4 x X replaced by Y (i.e. all nonhomogeneous
:.' . stationary branches in X¥#° are removed). Moreover
s
PN Yios # O
‘N
. f because a center occurs with a representation r € d of Hy/Ko = Z3. We claim that such
:H a center comes from the representation of O(3) on the five-dimensional space V3 of spherical
- harmonics of order 2. Indeed we obtain from [Go&St1,§15, Go&Sch&St,§XIII] the following
dimensions of fixed point subspaces
iy
)
*‘ dim VzT = 0
0
| ."
. Thus T/Dy = Z3 acts nontrivially while Z§ acts trivially on V2, and our claim can be
’: proved along the previous lines.
N Checking the list of subgroups of O(3) [Ihr&Go, theorem 2.8] we see that such symmetries
R4
!
b (Z50T,Z5® D2,0), 6 ¢ {£1} (8.27)
2 cannot be extended. Thus we obtain a global continuum € C Y of tetrahedral waves with
- virtual symmetry given by (8.27). Again we do not expect C to extend down to A = 0.
L2 In the special setting of our reaction diffusion system (8.17) it was natural to give the
- weakest condition, (8.22)", which still guarantees bifurcation of tetrahedral waves. This
iy condition involves the representation of O(3) on V2, the spherical harmonics of degree 2.
y However, tetrahedral waves also bifurcate from all centers which involve representations on
;"j V,, r > 4. Their symmetry (no “at least”, no “virtual” this time ) is given, locally, by
8
o
:: (Z50T,Z3® D2,6),0 € {£1}  for even r>4, (8.28)
(Z5®T,D;,0),0 € {£1} for odd r>4, (8.29)

) Using the language of Golubitsky & Stewart [Go&Stl], the reason is the following. For
::j the action of I' x S! on the eigenspaces of purely imaginary eigenvalues associated to V,,
"’ the symmetries (8.28) resp. (8.29) turn out to be maximal isotropy subgroups for each
g r > 2, r # 3. In our discussion in §9.2 we will show that there is always bifurcation, locally,

for any maximal isotropy subgroup (theorem 9.1). This proves our claim in the example.

. In our case, the dimensions of fixed point subspaces belonging to (8.28), (8.29) are at least
"{ two. In contrast, [Go&St1, §15] compute those r for which the dimensions of these isotropy
N subspaces are exactly two. Therefore they get bifurcation of tetrahedral waves only from V,
- with r = 2,4,5,6,7,9. In this respect, our global results are stronger even when applied only

ol locally.
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§8.4 More examples

In this section we indicate various examples to which our theory applies. However, we
do not elaborate on any of these examples. We only describe the natural symmetry I' of
the problem and, occasionally, give candidates for Hg, Ko, Hyo/Ky. These choices suggest
certain types of rotating or discrete waves which may relate to observed phenomena. To
corroborate the suggestions it is necessary to first select suitable one-parameter models of
these phenomena. Then one may compute the global Hopf index as in the previous examples.
This can be done, in principle and it may require numerical analysis in some of the problems
described below. Surveying our examples, we also collect hints on open questions, which we
discuss in the next section.

8.4.1. Our first example is theoretical and not too specific. Centered around the pa-
per by Golubitsky and Stewart [Go&St1] there are many local results which are related to
applications; see e.g. [Go&St2, Go&St3, Mon&Rob&St, Rob&Swis&Wag]. A fair amount of
work is spent on finding, for given representations, isotropy subgroups of I' x S! with two-
dimensional fixed point subspace. As in the example of tetrahedral waves above (§8.3.2) this
dimension restriction is not necessary to prove local Hopf bifurcation for maximal isotropy
subgroups. This will be established in theorem 9.1 below.

8.4.2. A second, still general class of examples are Hamiltonian systems

p = - Hy(p,q)
§ = Hplpq) (8.30)

with I-invariant Hamiltonian H(vyp,~vg9) = H(p,q), for all v € I'. For a background and
more general settings see e.g. [Ab&Mars|. Special examples are the spherical pendulum,
I' = O(2), and a circular ring of Hamiltonian coupled oscillators, I' = D,, [vG& Val]; see also
[vdM]. Adding dissipation, (8.30) becomes a one-parameter family

p = ~Hylp,q)+ AHp(p,q)
(8.31)

¢ = Hylp,q)+ AH,(p,q)

and theorems 2.9, 2.10 yield a global version of the Ljapunov center theorem with symmetry.
For a detailed local analysis see [vdM, Mon&Rob&St]. We note that ¥ = 0 in the 1 : —1
resonance analyzed in [vdM]. In the case of no symmetry, the dissipation trick was already
used in [Ale&Y1].

8.4.3. A famous example, which contains symmetry for conceptual simplification, is
Eigen’s hypercycle |Ei&Schu, Hof&Sig]. It consists of a circular loop of mutually reacting
enzymes. The symmetry is I' = Z,, and we may take Hy = Z, and Ko = {0}. Waves with
such symmetries might be interpreted as generators for biological clocks; symmetry breaking
(flip, flop) is related to frequency doubling. A local Hopf bifurcation analysis, disregarding
the symmetry aspect, was performed in {Hub}.

8.4.4. The example of a Turing ring, §8.2, can be generalized as follows. Consider a finite,
directed or undirected graph G, i.e. a set of vertices together with a neighboring relation which
defines the edges. Givens € § let N; C G denote the neighbors of s connecting to 1. Let each
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vertex be occupied by an “oscillator”, i.e. by some ODE kinetics [.(z,-), fe CI(RN,RN).
Fix a coupling function ¢ = ¢(z;,2,;), c € CY{RN x RN, RN) and consider the system

z; f) + Y dzpm) - ) clziz), i€, (832)

JEN; J: €N,

For similar settings see e.g. [Ash&Oth, Stu&Marek|. Disregarding symmetry aspects, global
Hopf bifurcation for such networks has been studied by Alexander [Ale2].

Let now I" be the symmetry group of the graph, i.e. the set of permutations 4 of § such
that N,;) = 7(N;), for all i. Then (8.32) is equivariant with respect to I'. Choosing an
appropriate parameter A we may apply our global theory. Oscillations in crystal lattices
come to mind as an example for infinite graphs §. Imposing spatial periodicity this reduces
to (8.32). Of course, generalizations going beyond the particular form of (8.32) would be
possible. '

Linear coupling ¢(z;,2z;) = z; — Z; in an undirected n-gon leads to the Turing ring (8.1)
of §8.2. If we consider electric coupling of cells [Cro&Field] then logarithmic expressions for
¢ are more appropriate. Working with convolution type integral equations, instead of ODEs,
we may also treat neural nets as in [adH, Fie4).

As a side remark we note here that graphs (8.32) may oscillate stably where the individual
f does not, see [Sma3, How, Ale3]. This effect occurs already for just two symmetrically
coupled oscillators. Two coupled oscillators can also show apparently chaotic dynamics [Ale4,
Cro&Field, Schr&Hol&Kub&Marek, Schr&Marek2|, a phenomenon which we attempt to
relate to global Hopf bifurcation briefly in §9.5.

8.4.5. Our next example concerns the simplest exothermic reaction A — B in a po-
rous catalyst pellet. See [Aris| for an account of the work of Lee and Luss on oscillations,
including a numerical simulation in one space dimension. For an analysis of the problem
without symmetry, including the related problem of isothermal oscillations with Langmuir-
Hinshelwood kinetics, see [Fiel, Fie3]. Including symmetry O(2) resp. O(3) for a cylindrical
resp. spherical catalyst pellet it should be possible to find effects like rotating hot spots
(Ho = SO(2), Ko = {id}). This example will certainly require some numerical input to
compute the global equivariant Hopf index X. For a relation to two-parameter problems see
again §9.5.

8.4.6. Continuing with PDE examples we mention problems on S?!, i.e. with circular
symmetry. The simplest such example, with SO(2) symmetry, is the scalar parabolic equation

. = zge+flzize), E€S'=R/Z. (8.33)

Due to the scalar nature of this equation the dynamics of rotating and frozen waves can
be analyzed in great detail, including instability of rotating waves and heteroclinic orbit
connections between them, see |[Ang&Fie]. The methods used there (maximum principles,
invariant manifolds, and some topology) are entirely different from our present approach.
Still (8.33) is an illustrative example to visualize our present results on global bifurcation of
rotating waves z = z(€ — ct), because such rotating waves are just periodic solutions of the
second order equation
e = 2+ f(z,7).

A system with SO(2)-symmetry is given by the ring laser [Ren&Hak|. Besides rotating waves
one also observes periodically “modulated” rotating waves. These correspond to invariant tori
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bifurcating from the rotating wave, see e.g. |Ren). For a local analysis of 50(2)-symmetric
systems, including such tori, see [vG&M-P&Tak]. We encounter this bifurcation again in
fluid dynamics, cf. 8.4.7, and we revisit it in §9.6.

8.4.7. Concerning fluid dynamics we mention Benard convection and the Taylor expe-
riment, cf. [Go&Sch&St]. In Benard convection, one of the observed stationary solutions
consists of hexagonal rolls covering the plane [Go&Swi&Kno, -Satl]. In [Rob&Swi& Wag|
periodic solutions are discussed in such a hexagonal configuration. The associated equiva-
riance group I' is a semidirect product of the torus SO(2) x SO(2) with the dihedral group
Dg. In fact, the torus comes from translations in the underlying hexagonal lattice and Dy is
the symmetry of the hexagon. In {Rob&Swi& Wag] the simplest Hopf bifurcation with this
equivariance is discussed, locally. It occurs in real dimension 12 of the eigenspace. All fixed
point subspaces for maximal isotropy subgroups (cf. §9.2) happen to be two-dimensional
in that case. In view of remark 8.4.1 above our global results therefore do not improve on
this local bifurcation question. On the contrary, the uniqueness and stability results on the
bifurcating branches given in {Rob&Swi& Wag| are beyond our grasp. Only some very weak
result on exchange of stability enters into proposition 6.3 on the coupling between center
index ) and orbit index #. The weakness is that stability implies & = +1, but not vice
versa. Of course, our global techniques are not confined to those "simple”, low-dimensional
singularities which can be understood thoroughly after sufficient imput of ingenuity. Still,
the singularity approach is preferable whenever it is viable.

In the Taylor experiment on fluid flow between rotating cylinders we encounter I' = O(2) x
S0(2) equivariance, if we look for patterns which repeat periodically with a certain fixed
characteristic height. Rotating waves occur with various symmetries ( Hg, K, ), e.g. as wavy
vortices, twisted vortices and spiral cells; see [Go&St2] and the references there. In [Go&:St2]
a simultaneous stationary and Hopf bifurcation is analyzed, in 6-dimensional space. Our
previous remarks apply.

8.4.8. Going beyond rigidly rotating waves there is experimental evidence for torus bi-
furcations from rotating waves, again, cf. [Go&St2], |Rand] for a mathematical account. In
Taylor flow such tori may figure e.g. as “modulated wavy vortices”. One idea to find torus
bifurcations of this kind by purely local techniques is discussed in [vG&M-P&Tak, §4]. They
consider generic O(2)-equivariant Hopf bifurcation with the usual 4-dimensional eigenspace.
As [Go&St1], they obtain bifurcation of two branches of rotating waves (related by reflection)
and of a 2-torus of standing waves (related by rotation). Perturbing the reflection symmetry
slightly, two generic SO(2)-equivariant Hopf bifurcations appear consecutively. They gene-
rate the two rotating wave branches. The 2-tori may persist, bifurcating through a secondary
bifurcation from one of the rotating wave branches. Note that this example also illustrates
nicely how a generic SO(2) equivariant bifurcation picture arises out of an O(2) situation, in
harmony with our presentation in §5. Another idea to study torus bifurcations by local tech-
niques is that of mode interaction. Considering O(2)-equivariant Hopf bifurcation, Chossat
& Golubitsky & Keyfitz [Chos&Go&Key| have studied the local bifurcation behavior at a
center with eigenvalues (modes) +1, +1w and w irrational. In normal form, they obtain rota-
ting waves, bifurcating 2-t and even 3-tori, already in the case of a 6-dimensional eigenspace.
For more results on mode interactions leading to tori see e.g. |[Chos&Demé&lo, Dal, Da2,
Da&Arm, Da&Kno, Go&St2], and the survey in [Go&Sch&St]. Of course, one would like
to analyze such tori not only near steady states. Let us also revisit here the experiments of
Agladze and Krinsky [Agl&Kri] on multiarmed spirals in the Belousov-Zhabotinsky medium.
The repeated connection and disconnection of arms in the core of the spiral, which they
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report, might be due to a torus bifurcation from a rigidly rotating multiarmed spiral which
has thus lost stability. We will return to the torus problem from a theoretical point of view ,
in §9.6. 3
Concerning tori, let us finish this section with a surprising example due to J. Swift [Swil. P
The tori which we have disussed so far all come from rotating waves, i.e. from an SO(2)- Y
factor in the equivariance group I'. In contrast, Swift considers a Turing ring of 4 coupled A
oscillators, as in §8.2 above, with Dy symmetry. He detects some open set of one-parameter .
bifurcation problems in this context, for which a 2-torus bifurcates locally, directly from the o
stationary solution. This torus occurs due to only a discrete symmetry Dy4! In a much more =
degenerate situation, such a possibility bas also been observed by Alexander & Auchmuty
[Ale&zAu2). Finding such tori certainly goes far beyond the scope of our present theory. f
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§9. Discussion

£€9.1 Outline

We finally put our results into a variety of perspectives. In §9.2 we draw a local conclu-
sion from our global results: locally, there is always bifurcation for any “maximal isotropy”
H® (theorem 9.1). Then we discuss, or rather circumvent, stability questions (§9.3). We
believe that this question, if asked globally, should be addressed numerically but we see some
obstacles. Anyhow, generic results may prove to be a useful tool. Returning to results of Ale-
xander, Auchmuty, and Yorke on global Hopf bifurcation in §9.4, we compare the topological
approach with the genericity, singularity theory approach followed here. Basically we find
the genericity approach more flexible, at least for periodic solutions. For example, it is closer
to the goal of finding continua with arbitrarily large minimal period. Such continua may lead
to homoclinic solutions or to openly chaotic phenomena. In §9.5 we link this circle of ideas to
the open question (9.7) of homotopy (non-) invariance of our global equivariant Hopf index
#. In systems without symmetry, obstruction to homotopy invariance comes from stationary
solutions with a multiple eigenvalue zero. Recall that we have excluded eigenvalues zero alto-
gether by assumption (2.20.a). In §9.6 we discuss eigenvalues zero imposed by equivariance.
We are led to a discussion of invariant manifolds of solutions, given by group orbits. This is a
generalization of rotating/frozen waves. For an example, we return to the question of 2-tori,
which bifurcate from rotating waves. Global bifurcation of such tori is open, cf. (9.13), but
not beyond the fringes of hope.

§9.2 Maximal isotropy subgroups

Paradoxically, one might think, global results in fact answer local questions. Here is an
example. We consider the I'-equivariant Cl-system

i o= f(\3), (0.1)

z€ X = RV, ) € R as usual, and assume
(20 = o (9.2.a)
spec D, f(0,0) = {%1} (9.2.b)

where spec denotes the spectrum and 1 is assumed to have
geometric (and algebraic) multiplicity N/2;

sign Re(spec D, f(A,0) = sign A  for A near 0. (9.2.c)

These assumptions are slightly more general than the basic assumptions (H1),(H2) of Go-
lubitsky & Stewart [Go&Stl, §5]. Letting A := D, f(0,0) we have the following action of
I'xS',S'=R/Z,on X

(90 = p(r)e 340z, (9.3)
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Note that (H, K, ©) is a virtual symmetry of z =0 at A = 0 if and only if
H® = ({(hOMK)| heH} < TI'xS! (9.4)

is an isotropy group of some z € S\ {0} under this representation, cf. definition 1.2; moreover
q = 2r is the only virtual period by assumption (9.2.b). For completeness we note that
any isotropy group for the representation § has the form (9.4) with some homomorphism
6:H S,

Following [Go&St1, §12] we call an isotropy group £ < I' x S! a maximal isotropy
subgroup if no other proper isotropy subgroup of I' x S! contains £. Assume, for a moment,
that an isotropy subgroup X of I' x §! is given with

dimp X¥ = 2. (9.5)

Then [Go&St1, theorem 5.1} states that local Hopf bifurcation occurs with symmetry X =
H®, under slightly stronger assumptions than (9.2.a-c). Using (9.5), they also obtain uni-
queness of the bifurcating local branch. On the other hand, (9.5) implies that X' is a ma-
ximal isotropy subgroup, by [Go&St1, proposition 12.5]. Thus [Go&St1] prove local Hopf
bifurcation for some maximal isotropy subgroups, namely for those which satisfy dimension
restriction (9.5).

But there are maximal isotropy subgroups for which (9.5) does not hold. Tetrahedral waves
as discussed in §8.2.2 are an example (I' =0(3), H = Z5& T,K = D2 or Z5 ® D). The
symmetries which we have encountered there are always maximal because € does not extend
to groups larger than H. And dimension condition (9.5) does not hold for representations
which come from spherical harmonics V, of degrees

r>8, r even,or
r>11, r odd.

I am indebted to Marty Golubitsky, among other things, for asking me the following two .
questions: “Does local Hopf bifurcation occur for all maximal isotropies? If so, why didn’t
you say it in [Fie5]7” The answer to the first question is “yes”. I prefer not to answer the
second question.

9.1 Theorem :

Let assumptions (9.2.a-c) hold and let £ < I' x S! be a maximal isotropy subgroup for
the action (9.3) of I' x S1.

Then £ = H®, and there exists a bifurcating (local) continuum ¢ C Ax X with symmetry
(H,K,8). More precisely, C contains the center (Ag,zo) = (0,0), and C \ {(Ao, zg)} is
nonempty and consists of periodic solutions with minimal period near 2w and with symmetry
(H,K,86).
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Proof :

Assumptions (9.2.a-c) allow us to apply theorem 2.10 on a small neighborhood Y of
(Ao,z0) = (0,0) in 4 x X, cf. remark 2.11. Note that analyticity assumption (2.20.c) is
not needed here, by assumption (9.2.c) and remark 7.2 (§7.3). Assumption (9.2.c) further
guarantees that, on the small neighborhood VY,

"g,x # 0

if we choose d such that @ € d. Thus theorem 2.10 yields a global continuum ¢ C VY
bifurcating from (g, zp). Any periodic solution (), z) € € has virtual symmetry at least

(H,K,8') forsome O'€d.

We claim that we may assume @' = 6 if the neighborhood Y is chosen small enough. This
holds by construction of C via generic approximations (cf. §7). Indeed, ¢ = 27 is the only
virtual period of (Ag, z() by assumption (9.2.5). By virtual period corollary 4.6, this implies
the following. Given any small € > 0 and any large ¢ > 0 there exists a neighborhood Y
of (Ao, o) and a neighborhood U of f such that any virtual period ¢ < ¢ of any periodic
solution contained in Y, for any nonlinearity g € U, satisfies

lg—2r] < e

Choosing a generic approximation g; — f, ¢; € U, we recall that a generic continuum Z; C Y
bifurcates, for each 1, as in theorem 2.7. By the remark above, all virtual periods on Z; deviate
from 27 by at most €. In particular, Z; does not contain any period doubling bifurcations,
and the minimal periods on Z; are bounded uniformly by 2r + €. Moreover, the symmetry of
the periodic solutions on Z; is always (H, K, ©), because symmetry changes only at period
doubling bifurcations. Passing to the nongeneric limit, as usual, proves that we may assume
6' =6 on (.

From |g — 2x| < € we also conclude that virtual period = minimal period for the virtual
period ¢ associated to (H, K,©) on . Thus lemma 4.11 implies, that the (true) symmetry
(H, K, ) further extends the virtual symmetry, and therefore

F® > H® = &g,

for any periodic solution (A, z) € €. Using maximality of Z, this implies

and the proof is complete.O

For detailed studies of (local) Hopf bifurcation from multiple eigenvalues in the non-
symmetry case see |[All& Y2, Ize&Mas& Vig, Kie|. These studies suggest results on local Hopf
bifurcation with symmetry which would be much more general than theorem 9.1, allowing
for resonances etc..

Theorem 9.1 does not address the question of bifurcation of periodic solutions with sub-
maximal isotropy L. In stationary bifurcation problems such submaximal bifurcations can
occur, see [Chos, Lau]. We expect similar phenomena in Hopf bifurcation.

.............................
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§9.3 Stability and numerics

Admittedly, maximal isotropy subgroups H?® with two-dimensional fixed point subspace
have the advantage that the bifurcation problem reduces to a standard Hopf bifurcation very
similar to the case of no symmetry. In particular the stability of bifurcating periodic solutions
can be calculated, e.g. for I' = O(2) |Go&St1, vG&M-P&Tak| and for I' = D,, [Go&St3];
see also [Go&:Sch&St|. These computations rely on normal forms and apply only locally, of
course.

A special case, where stability information is fairly complete, is the scalar reaction diffusion
equation on the circle

et

"t =
5

A

Ze = Zget flz, 1‘6) , EER/Z. (9.6)

If z = z(€ — ct) is a rotating wave and z¢ has 2j zeros, j > 1, then the strict unstable
dimension of z is 25 — 1 or 2j, cf. [Ang&Fie|. In particular, all rotating waves are unstable.
This is a consequence of a more general observation for monotone systems, see {Hir2]. Due
to the very special (scalar) form of equation (9.G) one can even draw some conclusions on the
global dynamic behavior. See [Ang&Fie] for more details.

In general, however, we have to resort to numerical pathfollowing schemes. Such schemes
follow solution branches and could, in principle, determine stability of any periodic solution
by an eigenvalue decomposition of the Floquet matrix. For systems without equivariance,
this has been done, see e.g. {Doe&Kerl]. For equivariant systems no such scheme is available
today. Why?

Most pathfollowings schemes can deal only with particularly easy bifurcation points like
turns, “simple bifurcations”, pitchforks, period doublings; see e.g. [Deu&Fie&Kun, Doe&Kerl,
Kub&Marek, Kii&kMit& Web, Mit&Web, Rhe] and the references there. A practical reason
is the abundance of these bifurcations in one parameter applications. A theoretical reason is
their genericity in one parameter systems (possibly with Z2 symmetry). Recently, however,
higher singularities (cusps, swallow-tails, “B-points”) have attracted more attention [Fie3,
Fie&Kunl, Fie&Kun2, Jep&Spel, Jep&Spe2, Kub&Marek, Kun, Rool, Roo2|. These singu-
larities are tied to multiparameter problems: A € R’. Understanding these singularities and
their interplay computationally is crucial to efficient pathfollowing in several parameters.

Symmetry is a source of higher singularities, already in one-parameter problems. It causes
kernels of linearizations to become ever higher-dimensional. Understanding the relevant local
singularities is a prerequisite for a successful numerical analysis. “Relevant” may be replaced
by “generic” here. Theorem 5.11 gives a list of such generic singularities for secondary
bifurcations of periodic solutions with Z,, or Z o, symmetry. Surprisingly, maybe, the critical
Floquet multipliers are always simple, +1. Hence schemes like AUTO [Doe&Kerl] apply, see
e.g. [Doe&Ker2]. This would change already for generic secondary bifurcations with Dy or
O(2) symmetry ~ not to speak of groups with irreducible representations of dimension > 2.

Our theoretically minded approach to higher groups uses generic approximations. They
perturb, unfold the contributions from higher symmetry slightly to produce a clean generic
diagram which could in principle be tackled by a pathfollowing routine. But this barely hides
the difficulty: how much should we perturb, quantitatively? Perturbing too little, the sin-
gularity persists numerically. Perturbing too much, the diagram becomes meaningless. This
Scylla & Charybdis alternative is reminiscent of unfolding of stationary singularities by PL
methods [Peit&Prii]. Viewing the dilemma from a different angle: the full-symmetry singula-
rity should be understood analytically, together with its lower symmetry unfoldings. Indeed
numerical discretization tends to introduce such lower symmetry perturbations automatically.
It remains to admit that we are far from a comprehensive answer to the problem.
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§9.4 Topology or singularity?

Let us examine the role of singularities and generic approximations in global bifurcation
results a little bit more closely. As a preliminary example we revisit global bifurcation of
stationary solutions

fhz) = 0

as discussed in §3. We have sketched there how homotopy invariance of Brouwer degree
and the global bifurcation result of Rabinowitz can be obtained by generic approximation.
Essentially, a generic approximation made 0 a regular value. If f is equivariant with respect
to I', it seems natural to consider f restricted to the spaces XX for each isotropy subgroup
K of I', up to conjugacy, and prove global results on XK [Cer, Cic, Pos|. This uses the
Brouwer degrees degf of f restricted to X K for each isotropy subgroup K. Under additio-
nal assumptions, the collection of degX actually classifies the equivariant homotopy type of
f completely; see [tD, theorem 8.4.1] and also the classification in (Hau, theorem 4.5]. The
additional assumptions are satisfied for equivariant self-maps of a sphere, e.g., if each irre-
ducible representation of I occurs with multiplicity at least 2. Then the collection of deg”
contains all information on f, from a homotopy point of view. Note that, working in XK
we can only get global bifurcation of stationary solutions with isotropy at least K, similarly
to the periodic case. We conclude that the topology and the genericity approach to global
stationary bifurcation seem equally powerful.

We consider the case of periodic solutions, but without symmetry, next. We remember
that the classical approach of Alexander & Yorke [Ale&Y1] treats global Hopf bifurcation as
a two-parameter problem. Equivalently, [Izel] employs the setting

F(p,A,z) = —i?+pf(z\,1‘) = 0;

with parameters p > 0 (nonminimal period) and A € R on the space of continuous functions
z(-) of period 1. Here 1 need not be the minimal period. They obtain a global bifurcating
continuum in (A, p,z) by topological techniques: basically some homotopy theory and the
J-homomorphism; see [Alel] and, for the infinite-dimensional case, also [Ale&Fitz]. The
results in equivariant settings by Alexander & Auchmuty [Ale&Aul, Ale& Au2| make use
of equivariance explicitly to reduce the equation to a bifurcation problem F = 0 with two
parameters. Afterwards, the results of Alexander [Alel| apply and equivariance is ignored.
Using equivariance more intrinsically, Matsuoka [Mat, theorem 3] obtains a more general
result on local Hopf bifurcation but assuming a free SO(2)-action. Phrased in a local setting
like §9.2, Matsuoka assumes

3 ¥o@p {0} # O
deD(o0)

For further relevant topologically-minded multiparameter results, dim A > 1, we refer to
[Bar, Ize2, Ize&Mas& Pej& Vig, Ize&Mas& Vig] and the references given there.

We recall from §3 and fig. 3.3 that all the above approaches have a common drawback
because they treat A and (nonminimal) period p, alike, as continuous parameters. In fact the
“jug-handle” example, due to Alligood & Mallet-Paret & Yorke |All&M-P&Y1] shows that
a continuum which is unbounded in the sense of Alexander & Yorke [Ale&Y1] may actually
look quite bounded to the innocent eye. The role of generic approximations at this stage is
twofold: it is possible to prove homotopy invariance of Fuller degree by generic approximation
[Chow&M-P] and to recover thereby the result of Alexander & Yorke. But also the concept of
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“snakes” [M-P&Y1, M-P&Y2| resolves the jug-handle difficulty, and generic approximations
lead to an alternative result on global Hopf bifurcation [Fie2] which cannot be recovered by
topological techniques so far. As we have mentioned in §3, the reason is the following. Using
generic approximations we may select continua in A4 x X along which the minimal period
jumps. Thus generic approximations have proved to be the more flexible tool, so far.

After this excursion into a world without symmetry we return to the generic equivariant
setting. Trying to imitate the jug-handle example we immediately notice a difficulty. Due to
theorem 5.11, © changes at period doubling bifurcations. This prevents us from closing up
the loop as in fig. 3.3. In the case of Z,-symmetry, n < co, we might attempt to construct
a “J-jug-handle” as follows. Let'm := |H/K| be odd and define j := ord;, (2) > 1 to be
the multiplicative order of 2 (mod m). Then the j-jug-handle should have the bifurcation
diagram of fig. 9.1, where a flip doubling is assumed at each of the j bifurcation points. Note
that after 7 flip doublings we arrive at

B = (K'm+2); (mod Z)
as a generator for the symmetry on the secondary branch, and we may replace h by h because
(K'm+2)Y = 272 = 1 (mod m)

and K = (mh). We did not attempt to make this example explicit. In particular, we do not
know the minimal dimension of z for which it may occur.

X[ 8p

2p [ N I
-
r’’ P
Fig. 9.1 A j-jug-handle. m = 7.5 = 3.
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Let us compare the j-jug-handle to the jug-handle. Differently from the jug-handle our
j-jug-handle has not only 1 but j “loose ends”. And again each loose end has equivariant
orbit index @ = 0, necessarily.

This phenomenon of several loose ends is intimately related to bifurcation from centers
with multiple eigenvalues. In principle, each of the three loose ends of fig. 9.1 might connect
to the same (nongeneric) center relating to different representations of H/K with nonzero
crossing numbers of the purely imaginary eigenvalues. In the terminology of Alexander &
Auchmuty [Ale& Au2| such a continuum would then be called global, due to the j-jug-handle
loop. But the ¥-index tells us, that some other unbounded branch has to exist. In fact,
following snakes, paths with @ # 0, we would never enter into the j-jug-handle loop because
all loose ends have index ¢ = 0. Still, the absence of closed loops with just one loose end
might indicate a synthesis: a global bifurcation result which keeps (nonminimal) periods
continuous but does not consider a j-jug-handle as global. A similar refinement would be
desirable for rotating waves. Who knows?

From §8 we recall another argument for controlling minimal period rather than just “pe-
riod”. In §§8.2, 8.3.1, we have seen why the results of Alexander & Auchmuty [Ale&Aul,
Ale& Au2] could not control symmetry because they could not control minimal period.

The remarks above should have spread sufficient doubts on whether our orbit index @ is the
“right and only” choice. Suppose we want to recover the results of Alexander & Auchmuty
[Ale&: Aul, AledzAu2]. Then we should choose for @ some equivariant analogue of the Fuller
index. But we are still lacking such an analogue.

Or we might be interested in a breaking of the orbital symmetry H at flip or flop pitchforks.
Then we should design an index which pushes us off the primary branch there, instead of
staying on it as our orbit index ¢ does. Or we might be interested in starting from centers
with H < G in the generic situation: again the pitchforks spring to life. Going beyond our
Z,, framework (n < oo), we might ask for a suitable orbit index in generic D, ~ or O(2)
- equivariant bifurcation diagrams. Each task might require a different index, regardless
whether it is analyzed topologically or via local singularities.

§9.5 Homotopy invariance

Any useful index ought to be homotopy invariant. Understanding homotopy invariance of
an index renders it more computable, more applicable. Here is an open question.

What are the obstructions, if any, to homotopy invariance (9.7)
of the global equivariant Hopf index ¥ ?

As we will explain below, we are deliberately vague here about whether to take the generic
Hopf index ¥ (definition 2.5) or its nongeneric counterpart ¥ ;:' K, (definition 2.8).

We rephrase question (9.7). The index ¥ is assigned to a one-parameter family of vector
fields f(A,z). A homotopy f;(A, z) of such vector fields may be viewed as a two-parameter
family

f(A,1,z)

of vector fields. Let us consider any closed loop (Jordan curve)
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in parameter space (A, 7). Restricting the two-parameter family f to parameters in ¢ yields
a one-parameter problem with associated Hopf index ¥ = ¥(c) depending on the curve c.
Then homotopy invariance of ¥ holds if, and only if,

() = O (9.8)

for any loop c¢. Contracting the loop ¢ to almost a single point, this becomes a question on
singularities of equivariant two-parameter vector fields.

We relate question (9.7) to our assumption (2.20.a) that stationary solutions are nondege-
nerate (eigenvalues # 0). If assumption (2.20.a) holds along the loop ¢, then necessarily

¥plp o) = o. (9.9)

Indeed, on any representation space XXo (cf. (2.22)) the number of pairs of eigenvalues
crossing the imaginary axis from left to right equal those crossing back in the opposite di-
rection, as we trace out the loop ¢ through one full cycle. This indicates that any possible
obstruction to homotopy invariance of ¥ is related to the occurence of eigenvalues 0. Note
however that (9.8) need not hold if stated for the generic equivariant index ¥4, For example
let n =7,d = {1,2,4} and choose a Z,-equivariant two-parameter vector field

2z = fle,z) = ez +  hot(2) (9.10)

where e = A + 11,2 = 1; + iz90 € € = R?. As usual, Z, acts on z by counterclockwise
rotation. The Z,-invariant centers are given by (g, z) = (0+1:7,0), 7 # 0, with representation
+1 forr >0,
-1 fort <O,
cf. (2.21). Choosing for ¢ a circie in the (A, 7)-plane centered at 0, we conclude from definition

2.5 that
¥de) = -1 # o0, (9.11)

because 1 € d = {1,2,4} while —1 ¢ d. We emphasize that nondegeneracy assumption
(2.20.a) holds along ¢. Consistently, ¥,7%(c) = +1 and

”if,(o}(") = -141 = 0.

It is the generic Hopf index ¥9(c) which is not homotopy invariant, here. Note that a double
eigenvalue 0 occurs for the linearization D, f(0,0) at € = 0.

In the nonsymmetric case I' = {id}, homotopy (non-)invariance of the index X is un-
derstood, see Fie3]. We briefly summarize the result. The only obstruction to homotopy
invariance of ¥ in generic two-parameter families are B-points: stationary solutions with
an algebraically double and geometrically simple eigenvalue 0. This singularity was analyzed
locally by Arnold and Bogdanov [Arnl, Arn3, Bogl, Bog2l; the normal form was obtained
independently by Takens [Tak]. In {Fie3] an index B = %1 is assigned to each B-point such
that

Xe) = ) B, (9.12)
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where the sum ranges over all B-points with parameters (A, 7} inside the loop c. Note the
similarity between (9.12) and (9.11) if ¢ contains only one B-point.

The significance of B-points, and of the open question (9.7), reaches far beyond the so-
mewhat academic topic of homotopy invariance of ¥. To illustrate this let (Ao, 70, Z¢) be an
isolated B-point, of index +1, ¢ a small circle around it in parameter space, and suppose the
phase space X is a compact manifold. Then

H(c) = +1 # 0

regardless of how much we cnlarge the loop ¢, as long as no other B-point leaves or enters
the interior of ¢. In particular, global Hopf bifurcation occurs on ¢ (more precisely: on
¢ x X). Because ¢ and X are both bounded, this implies bifurcation of a continuum of peri-
odic solutions with arbitrarily large (virtual) periods. Mostly, we expect that virtual period
= minimal period. But how can minimal periods become unbounded? A first mechanism
is termination at a homoclinic solution (“blue sky catastrophe”). As the parameters vary a
periodic trajectory approaches a stationary point with some part of it, becomes a trajectory
which tends to this point in both time directions (homoclinic), and disappears. This happens
already near B-points, see |Arnl, Bogl, Bog2] and also [Arn3, Chow&Ha, Gu&Ho|. Other
mechanisms how minimal periods become urbounded include period doubling cascades, flow
plugs, etc.. An example involving Schweitzer’s counterexample to the so-called “Seifert con-
jecture” is given in [Ale&Y1|. So we get continuation of homoclinics, in the first case, and
necessarily complicated (chaotic?) motions in the other cases. Thinking of Sil’nikov’s results
on horseshos near certain homoclinic orbits [Sil], see also [Gu&Ho)], and of the “homoclinic
explosion” in the Z,-symmetric Lorenz system, see e.g. [Spa], we can argue that continua-
tion of homoclinics may likewise lead to chaotic motions. Especially in equivariant systems,
continuation of homoclinics should yield interesting results as the Lorenz model suggests.

Returning to Z ,-equivariant systems we should look for analogues of B-points. Such points
have been studied by Arnold [Arn2, Arn3| and, in case n = 2,3, by Horozov [Hor|. The case
n = 4 is not resolved completely. The normal forms begin as in (9.10). The normal form for
“B-points” with D, - or O(2)-symmetry can be obtained to any order from the results of
Cushman & Sanders [Cu&San]. The dynamics of the O(2)-case are discussed extensively in
{Dal, Da2, Da&Arm, Da&Kno, Gu]. For a discussion of other codimension two bifurcations
we refer to [Chos&Dem&lo, Chos&Go& Key, Go&St2|. Though the results of Arnold and
Horozov (Arn2, Hor| were originally motivated by resonant bifurcation of tori, we expect
them to play a central role for global equivariant Hopf bifurcation in two parameters and for
understanding homotopy invariance of the index X.

£9.6 Manifolds of solutions

In assumption (2.20.a) we have required the branches (A, z(A)) € 4 x X#0 to be nonde-
generate (eigenvalues nonzero). One might wonder whether the action of the compact Lie
group I' forces degeneracies which make assumption (2.20.a) self-contradictory. Let zy be
a stationary solution and I';, = Hy its isotropy. Then, acting by I' on zj, we get a solu-
tion manifold diffeomorphic to I'/I';,. Restricting our attention to XHo_ however, we are
interested in this manifold only as far as it intersects X#0, This part is diffeomorphic to
W(Iy,) := N(Iz,)/Tz,, where N(I';,) and W(I;,) denote the normalizer and the “Weyl
group” of I';,, respectively. Unless W I, is discrete, the (group-) orbit of zg in XHo forces
degeneracies.
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Frozen waves are an example. Indeed, let I' = SO(2)=R/Z, Iy = Hy=Z, , n < o0.
Then N(I'z,) = SO(2),W(Iz,) = §O(2) = S! and we obtain a circle of stationary solutions,
a frozen wave {cf. definition 1.1, H, was called K there). By theorem 5.11, frozen waves
occur only for isolated parameter values in generic one-parameter systems. If

dim W(Iy,) > 2

we obtain a higher-dimensional manifold. But we expect the flow on this manifold to be
nonstationary for generic I'-equivariant one-parameter vectorfields. Then frozen waves are
the typical case, and are dealt with by theorem 5.11.

Still, we may ask for bifurcation of solution manifolds, given by the action of W(I%y,), and
for the flow on such invariant manifolds. In [Go&Stl, §12], Golubitsky & Stewart ask for
a natural bifurcation context involving WTIy, = SU(2) = S3. They observe that such a
bifurcation would require 3 additional parameters, besides ), for its description. Here is an
example. Let X := R* = H be the space of quaternions, and let SU(2) = S3, the group of
unit quaternions, act by multiplication on X. Consider an SU(2) equivariant vectorfield

) :+ X - X.
Then f(X,0) = 0. Writing £ = f(, z) in polar coordinates, r = |z|, we get

= r-a()r),
where a is independent of the angle coordinates by SU(2) equivariance of f. Assuming
a(0,0) = 0 and the transversality condition D)a(0,0) # 0, we obtain A = A(r}, locally, such
that

0 = r-a(A(r),7).

This constitutes a flow-invariant 3-sphere of radius r for the vectorfield f(A(r),-), bifurca-
ting from the trivial solution. Identifying this invariant sphere with SU(2) again, we see
that SU(2) acts transitively on it. In particular, the flow on it is determined precisely by
J(Mr),z*), where z* corresponds to id € SU(2). Because f(A(r),z") has to be tangent
to the 3-sphere this leaves us with 3 additional free parameters which determine the flow
on that sphere. At the bifurcation point A = 0, these three parameters can be computed
from the linearization D, f(0,0)z*. Replacing SU(2) by SO(2), this is precisely analogous
to Hopf bifurcation of rotating waves. The one free additional parameter there is the speed
of rotation, or the minimal period.

This guides us to ask another question: what is the global “bifurcation” behavior of solution
manifolds, obtained by the action of the Weyl group W(I;,)? And what is the flow on this
manifold? For W(I;;) = SO(2) we have tried to answer this question in theorem 2.9.
We obtain global bifurcation results for rotating/frozen waves. They resemble stationary
bifurcation results, because they come from the action of the Weyl group. Factoring out this
action, conceptually, we may view theorem 2.9 as a global result on bifurcation of relative
equilibria for dim W(Iy,) = 1. But this is only the simplest case, and dim W(I;,) > 2 is
entirely open to the public. However, we still do not know of a natural application for these
phenomena, other than the mathematical construction given above.

In §8 we have encountered examples of a different kind of solution manifolds: invariant
A 2-tori (cf. §8.3.8). They were bifurcating from rotating waves. Thus the Weyl group is
X S0O(2), bere, and its action foliates the 2-torus periodically. The dynamics on the torus may
be quasiperiodic, but equivariant with respect to the SO(2)-action, of course. En passant,
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we note that this action makes the rotation number depend differentiably on the parameters.
For rational rotation numbers, the torus consists entirely of periodic solutions. All these
claims are easy to verify locally near the rotating wave from which the torus bifurcates. Just
use a local Poincaré-section S to the rotating wave and the Weyl group action, and project
the flow on the torus onto S. The rotating wave then becomes a stationary point in S, a
relative equilibrium, and the torus bifurcation is a plain and simple Hopf bifurcation in S.
Thus the tori may be viewed as relative periodic solutions to the SO(2)-action.
Of course, this is a local argument. It leads to another open question:

What can be said about global bifurcation of 2-tori, foliated
by an SO(2)-action?

(9.13)

Being unable to answer this question, now, we may happily generalize it. We may wonder
about global bifurcations of relative periodic solutions, relative homoclinics, etc. for Weyl
group actions with dsm W (I;,) > 2. But our discussion, which has started out at blue sky,
is about to dissolve in catastrophic clouds. So we stop.
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§10. Appendix on genericity '

§10.1 Outline

In this appendix we give a condensed but complete and, unfortunately, technical account
of the transversality arguments leading to the local generic results formulated in theorem
5.2, lemma 5.9, and theorem 5.11. For a general background on transversality see [Ab&Ro].
Due to technical complications, we will use notation more freely than in the previous sections

whenever misunderstandings can be excluded from the context. it
The outline is the following. In §10.2 we present a transversality theorem (theorem 10.2), it
due to Tromba [Tro), which is basic to the whole section. This theorem can be applied in an K
analytic semigroup setting to yield genericity results [Fie2], and we indicate the appropriate A
modifications. To apply theorem 10.2, we have to analyze codimensions of some varieties X
of equivariant matrices with prescribed eigenvalues. The basic results are collected in §10.3, -::_
proposition 10.3. The transversality machinery is then used in §10.4, illustratively, to prove ::: "
theorem 5.2 on generic Hopf bifurcation. Concerning secondary bifurcations, we first consider :};_
case (c) of theorem 5.11, i.e. finite cyclic equivariance G = Z,, of ::_'-:
T = f(’\a ZL‘) . ..
In lemma 10.6, we construct the required perturbations, locally, for a given periodic solution ‘;
(A, z) with minimal period p and known symmetry (H, K,0). To justify this necessary ._-f
restriction, we then describe a localization process in §10.6 which provides the precise tech- ‘_.r
nical setting for our application of transversality. These long preparations pay off in §10.7 ""
in our proof of lemma 5.9, which is an induction over increasing minimal period (as usual:
[Ab&Ro, All&M-P&Y2, Fie2, Kup, Med, Peix, Smal, Sot}), and in addition over decreasing 3
h = |H|. We finish this appendix in §§10.8, 10.9 by sketching simplifications and neces- :’
sary modifications of these arguments, which then lead to proofs of the simple assertions of ::_j
theorem 5.11 given in cases (a) and (b), G = Z . Refering to the usual period induction, Ry
cases (a) and (b) could actually be proved first. But our ordering makes this section more a3
self-contained. oy
N
A
§10.2 Abstract transversality ;:.:"
We start with abstract transversality in an infinite-dimensional setting. Let U, J, Y be open ﬁ
subsets of Banach spaces, and ' =
JOo :\'
v = Uv (10.1) N
=0 3
a finite dimensional variety in Y with stratification V;. More precisely, let V be a closed N
separable subset of Y consisting of a finite disjoint union of (not necessarily closed) em- \ S
bedded C* submanifolds V; of Y (called strata of V'), with decreasing finite dimensions N
dim V;,dim V := max; dim V; = dim Vp, such that V; UV, uU.. .U V;, is closed for any }3
J1 < jo. Let \
R : UxJ - VY ; }
(f’ w) i R(fn w) (10'2) .:-:
be a C¥-map, k > 1. We collect some terminology. ::::
:.: _,
N
N
@
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10.1 Definition :
We call R Fredholm, if it is Fredholm with respect to w € J, i.e. if the image tm (D R) Y
is closed with finite dimensional complement and if Dy, R has finite Fredholm index
i(R(f,w)) := nul(DyR(f,w)-def (DyR(f,v))
for any f € U,w € J (cf. |[Kato]). Here nul,def denote dimension of the kernel, codimension ~
of the image, respectively. "
We call R proper with respect to V on a subset K of J, if R(fn,wn) €V, fn € U,w, € !
K, fn = f € U together imply that some subsequence of w, converges to a limit in K. 1
We call R transverse to V at (f,w) (in symbols: R, V) if R(f,w) € V; for some j .
implies that im DR(f, w) together with the tangent space Tg.,,)V; spans the Banach space b
of Y, ie. ]
TR(f.w)Vj +m DR(f, w) = TR(f,w)y'
In particular R, V, if R(f,w) ¢ V. The related notations R(f, ) hw V, RMV etc. are
self-explanatory. )
The following theorem is essentially due to Tromba [Tro} and the modification which we use 3
here is contained in [Fie2, §2|. For a finite dimensional background we recommend [Ab&Ro}, "
again. X
10.2 Theorem : .
Let U,J,Y,R,V be as in (10.1), (10.2) above. In addition, we assume for the C¥-map R
that 1
R is Fredholm on R™1(V) with constant !
index i = i(Dy R(f,w)) € Z; ' (10.3) X
R is proper on a subset K of J; (10.4) A
RAV (10.5) ﬁ
k > max{0,i + dim V} . (10.6) ‘.
Then the set d
Gv = {felU|R(f, )M,V for all w € K} -(10.7) "
is residual in U. 4
If we assume moreover that y
V is a manifold, or (10.8.a) !
i+dimV <0 ' (10.8.5) <
then Gy is open and dense in U. )
A proof is contained in [Fie2, theorem 2.5, corollary 2.6]. The basic idea is to consider \
manifolds V and the projection to the f-component \
r: RY(V)—U. :
By (10.5), R~}(V) is a manifold. Moreover, Gy consists precisely of the regular values of ;
x. Because 7 turns out proper Fredholm with the same index as R invoking the Smale-Sard g
Theorem [Sma2] completes the proof. We omit all further details. t
From the definitions it is obvious that ~3
Gv = {feU | RALKNV = o), ;
if assumption (10.8.b),1 + dim V < 0, holds. )
®
N
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§10.3 Varieties of equivariant matrices

In a typical application of theorem 10.2, f will be the nonlinearity in

f(\z). (1.1)

r =

We will define

R = (Iy,D.IIy),

for a K-equivariant “Poincaré” map ITy as in (5.12), and then put V = {0} x Mf for some

w=(,1),

appropriate set MJK of K-equivariant matrices. To this end, we now define some useful sets of
such matrices and calculate their (co-)dimensions. “Useful” matrices are those which pertain
to our conditions on flips, flops, flip-flops and generic centers as given in §§3 and 5. To
fix notations let K = Z,,k < oo with real representations p*, and possibly p~, and with
complex representations p, as irreducible types (cf. §§2,3). Let K act on RN (not necessarily
irreducibly) by p. Writing spec(M) for the spectrum of a matrix M and mult(ug) for the
algebraic multiplicity of gy (mult:=0 outside spec(M)), we define the sets

M(K,N): all N x N matrices over K = Ror C; (10.9)
ME(R,N): all K-equivariant matrices M € M(R, N);
M(pg,m) : all M € M(R, N)with mult(ug) > m;
MK (uo,m) 1 = M(po, m) N MK (R, N);
Mio: allM e MK(R, N) such that spec(M) contains
an eigenvalue ug with Re pg = 0;
Moo : all M € Mj g such that
mult(0) > 2, or (10.10.a)
the sum of multiplicities of pg € spec(M) with (10.10.0)
Re py = 0 exceeds 2 ;
Mho(k): all M € ME(R, N) such that spec(M) contains
an eigenvalue yg = 271 - ¢/k for some e € Z \ {0}
and fixed integer k.
Mi1: all M € ME(R, N) such that spec(M) contains
an eigenvalue pg with |ug| = 1;
Mz1: all M € M;; such that mult(+1)+mult(-1) > 2, (10.11.a)
or
the sum of multiplicities of ug € spec(M) with (10.11.5)
|#o| = 1 exceeds 2 ;
Mgq(k): al M e MK (R, N) such that spec(M) contains

a primitive e-th root of unity for some 3 <e <k
and fixed k.

Note that these sets define algebraic varieties in the linear vector space MK (R, N). We
calculate codimensions in that space. :
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10.3 Proposition : \
- ¢
codim MK(uo,m) = { ;nm :; ::g : ﬁ’ (10.12.a) o
codim n ME(,m) = Zcodim ME (u;,m)) (10.12.)
if the pairs {y;, fi;} are mfxtually distinct; and l f
codim Mjs = j, codimM;, = j (10.12.¢)
whenever M; g or M} 5 is deﬁnea. “]

For K = {0}, the proof could follow essentially Brunovsky [Bru]. For the convenience of the
reader we give our own account, including nontrivial K. Basically, the proof of proposition
10.3 reduces to an application of results by Arnold and Galin on codimensions of sets of
matrices, cf. [Arn3, §30]. The next lemma takes care of K-equivariance.

.
.
{ .
10.4 Lemma : N
Let K act isotypically on RN by a real or complex representation p. Then we have b
isomorphisms ¢
ME(R,N) = M(R,N) for p real, (10.13.a) : "
ME(R,N) = M(C,N/2) for p complex. (10.13.b) )
Proof of lemma 10.4 :
I p=pt or p~ is real, then K-equivariance is automatic by linearity. Therefore (10.13.a)
is trivial.
Suppose now that p = p, is complex. We decompose RY into irreducible subspaces, each .
of which we identify with € such that :
p(h) = e2mirh Jorallh€ K < R/Z C
acts as complex multiplication on each subspace. This defines an isomorphism ¢ : RN — -:
€ N/2 such that the following diagram commutes N
N — N '
R plh) R
e} ol
— N/2 3
CNﬂ exp (2mirh) c / . o
We define a map "
ME(R,N) - M(@,N/2) R
M - M = M1 9
Pick some h such that ezp (i9) := ezp (2mirh) is not real. Then : \
p(hEYM = Mph?!) = K
EON = Nt X
L
) . . . .
Thus M is complex linear if and only if M is K-equivariant. Therefore MK(R, N) and N

M(C, N/2) are isomorphic, by M ~ M, and the proof is complete.O

e . , Y
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Proof of proposition 10.3 :
To prove (10.12.a), we may restrict our attention to the case

_ [N if po€ R
, = N2 if uo¢ R.

Indeed, we may use the equivariant eigenprojection associated to pg to achieve this reduction.
Similarly, we may assume that K acts isotypically on RY. Otherwise we decompose
RV into representation subspaces, then calculate codimensions for each restricted matrix
separately, and finally add up these codimensions.
Suppose first, that the action p of K on RV is real, p = p* or p~. By lemma 10.4 it is

’-
then sufficient to prove o
codimp M(po,m) = N, (10.14) :'.‘
S
where codimp is understood in M(R,N). From m = N and [Arn3, §30], assertion (10.14) is ;‘;
immediate. -
Next suppose that p is of complex type. By lemma 10.4 it is then sufficient to prove -
I\.-
KN
codim; M(uo,N/2) = N/2, (10.14)' g
b\.-
where codim. is understood as complex ‘codimension in M(€,N/2), this time. Indeed, ;:'.
(10.14)" implies
codimp M}‘(uo,m) = N,
because real codimension in MX (R, N) equals twice the complex codimension in M(C, N/2).
Note here that the multiplicity of ug for the complexification in M(€ , N/2) becomes N/2,
regardless of whether u is real or complex.
Again, (10.14)" is immediate from [Arn3, §30]. This proves (10.12.a).
To prove (10.13.6) we just decompose any matrix near [} MK (y;,m;) into blocks by the
eigenprojections associated to {u;, ;}. Then the respective codimensions add up, proving
(10.13.5). ,
To prove (10.13.c), we consider the sets M; g separately. Consider M;¢ first. Certainly
codim Mj o > 0. Let My € M; o have only one simple pair of purely imaginary eigenvalues
Mo, o # 0. Perturbing pg to pg + %, A € R, we see that codim Mo = 1, which is the
codimension of the stratum of M. By exponentiation, the codimension of Mj; likewise
equals 1.
Consider M3 o(k), M3 (k) next. Because these sets are defined via eigenvalues p( ¢ R,
their codimensions are 2 by (10.12.a).
The set M3 is the union of two sets given by (10.10.a) respectively (10.10.b). The set
given by (10.10.a) has codimension 2 in MX (R, N), by (10.12.a). Next suppose that (10.10.b)
holds. The set
M3 := {M € Mg |mult(up) > 2 for some pg with Re pg =0 # Im pp}
has codimp > 3 in MX(R, N). Indeed, the complex Jordan decomposition of M € M3q
contains
Ko
) o O
‘ * . : * - , or ( 0 “0 ) .
1 po
LY .‘
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As in [Arn3, fig. 109(b)], complex perturbations transverse to M3 are given explicitly by

A

: or Ay M

with A, A" € R, X2,...,An € € = R?, m > 2. This yields codimp > 3 respectively > 4.
All elements of M2y \ Msa yield codimensions > 2 or = 2, by (10.12.a,b). This proves
codim Ma = 2.

The case of Mg is similar. Note that (10.11.b) is related to (10.10.b) by exponentiation,
yielding equal codimensions. Applying (10.12.a,b) the codimension associated to Mo} is also
2, and the proof of proposition 10.3 is complete.O

§10.4 Generic centers

With the basic transversality machinery at hand we now turn to genericity. We recall our
notion of genericity from §1.5, definition 1.3. Given some property £ of stationary or periodic
solutions of

z = f(Az), (1.1)

we call € generic, if the subset
G = {feF|& holds}

is generic in ¥. Recall from (1.36) that 7 is the set of G-equivariant maps in C4(4 x X, X),
putting Hy = G = Z, and Ky = {0} in (1.36).
Genericity can be “localized” as follows. Let

be a countabel covering of X with closed balls 8;, and define
§(8;) = ({f€F:€& boldsfor (A z)€ 8;}. (10.15)

If G(8;) is residual, for each 7, then the countable intersection

§ = [)§(8)

J
is still residual. Thus it will be sufficient to prove that each §(B8;) is residual. This localizes
the proofs because compactness becomes effective on B;. Also, to investigate ¢(5,) it suffices
to know f on a slightly larger open ball BJ'., and we may use any cut-off procedure for f

beyond B;.. We choose not to mention B;, BJ'- henceforth, omitting the index j, and replacing
G by G(B) and ¥ by the Banach-space

F o= {fec*B,RN) | f(\z) = 1f(Az) for all y € G) (10.16)

tacitly, to avoid notational complications.
As a first illustration of the machinery developed so far we prove theorem 5.2 on generic
H-centers.

Lo

X"

o

e A T,

TN

v s =

AR,

T ." Ay Yy

-

R r



Proof of theorem 5.2 :

We have to prove that, generically, H-centers are generic, cf. definition 2.2, forany H < G.
Fixing H, we need consider only H-centers (A, z) with isotropy G, = H.

To apply transversality theorem 10.2 let

U:=7% Y:=xHx MH(R,N).
Here M# is defined as M¥, with H replacing K, of course. Let
J = {(hz)e(axXH)n8 | G,=H}.

Note that J is in fact open, and isotropy on J is given exactly by H. For K we take any
closed subset

K ¢ Jng'.
Finally we define
R(f,w):= (f(w), Dz f(w)), w:= (A, z),
and V C Y should have the form
V.= {0} x V'

with subvarieties V'’ of M¥ (R, N) to be specified below.
Then all assumptions of theorem 10.2 are satisfied. Indeed,

R:FxJ-Y
is C3, Fredholm of index
i = dimA - dim ME(RN) = 1 - dim MI(R N),
proper on K, and transverse to anything because the linearization

g = DIR(f)’\)I)'g = (g(/\,l'), D,g()«,z))
7 - XxHxMH(RN)

is surjective. Here we use that the isotropy G, of z is just H. In case G; > H, surjectivity
would contradict the G-equivariance of ¢ € 7. Finally the differentiability condition (10.6) is
also satisfied:

k=3>1>1-codimV'=1-(dim MI(R,N)-dim V)
=t+dmV.

Applying theorem 10.2, we first take V' = MH(R N). Then Gy is open and dense, by
(10.8.a). Moreover, f € Gy iff 0 is a regular value of f. In that case f~1(0) is a one-
dimensional embedded submanifold, locally near any w € K.

Next we redefine U := Gy and afterwards we pick a new V' := Mz . Then (10.8.6) holds
by proposition 10.3:

i+dimV = 1-codimV' = -1<o0.

“a s =

......................................
-------------



..... WS LSO WO

- 126 ~

Hence the new Gy is again open and dense, and
f(hz)=0 = D:f(Az)¢ M2o (10.17)

for f € Gy, (A, z) € K. Now suppose that (A, z) € K is an H-center. Then D, f(},z) does
possess some purely imaginary nonzero eigenvalues. By (10.17) they are simple, and 0 is not
an eigenvalue of D, f(A, z). This proves condition (2.2.a) for a generic center.

Replacing U by Gy, once more, we may pick a new V' := M} 0. Because R hits V = {0} x V'
only in the stratum

Mo\ M2,

of codimension 1, transverse crossing of the purely imaginary pair as in {2.3.b) follows for f
in the open dense set Gy . In particular, centers are then isolated.

Finally, the curvature condition (5.3.c) can be satisfied by an explicit local perturbation
which was given in [Fie2|, equivariantly as it turns out. This completes the proof.0

We define
Gu(B) : the set of those f € ¥ for which all centers in (10.18)
B are generic.

This set is residual, by theorem 5.2. Obviously, Go(B) is also open. We recall that condition
(2.3.c) ensures the branch of periodic solutions bifurcating from a generic center to consist of
hyperbolic periodic solutions. Denoting the flow of (1.1) through (A, z) by

Wl(fa’\) .’L‘) )

we express some uniformity of this hyperbolicity property for later use.

10.5 Lemma :

Let fo € Gy(B) and Ty > O be given. Then there exists an open neighborhood N, of
{(A\,z) € B | fo(A, z) = 0}, and an open meighborhood Uy of fo in Go(B) such that the
following continuity property holds.

If f in Uy, and if z(t) = ¥:(f, A, z) is any nonstationary periodic solution with minimal
period < Ty such that

(A, z(t)) € Np, forall ¢,

then (A, z(t)) is hyperbolic.

Proof :
We argue indirectly. Suppose there exist converging sequences

fj - fo

(A;,2;(t)) = (*0,20), uniformly int,

with fo(Ao,z0) = 0 and with the minimal period of the non-hyperbolic periodic solutions
(A;,z;(t)) being uniformly bounded by To. Then (Ao, zo) € B is a center of fg, by virtual
symmetry corollary 4.6. It is a generic center, because f; € Go(B). An application of the
implicit function theorem shows that this center together with the emanating local branch
of hyperbolic periodic solutions persists, uniformly for small perturbations f; of fo. This
contradicts the assumption that (A;,z;(t)) is non-hyperbolic, for large ;. Thus the lemma is
proved.O
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§10.5 Perturbations

To study genericity of secondary bifurcations of periodic solutions we consider case (c) of
theorem 5.11, first. In lemma 10.7 below, we give a rather local analysis of perturbations of the
“Poincaré map” ITy (cf. (5.12)). Of course, this aims at the crucial transversality assumption
(10.5) in theorem 10.2. Even without any equivariance, the transversality assumption can
be expected to hold only for periodic solutions W(f, ), z) = £ with minimal period ¢ = p,

[Ab&Ro] for a detailed discussion of this technical obstacle which is circumvented by
an induction over the ranges of minimal period (cf. also [All&M-P&Y2, Fie2, Kup, Med,
Peix, Smal, Sot|. Including equivariance will require an additional induction over decreasing

= |H|, for each level of minimal periods. A localization procedure which leads to suitable
sets J, K for an application of theorem 10.2 will be described in §10.6 below.

Assume now that G is finite, zo(t) = ¥:(f, Ag,zo) is periodic with minimal period py,
symmetry (H,K,0), and h € H satisfies (5.11.a-c). Let § = {zo} + S', ' = (z(0))*
be a fixed Poincaré section. Then Ty = (g, A, z) is defined locally, for (g,(), z)) in a
neighborhood U x J of (f,(Xo,Z0)) in 7 x (4 x S). We may identify S' with RV ~!. Define

R: Ux@Wn(axsK)y o s¥*xmERrN-1). (10.19)
R(g,/\,I) = (HU(Q’A’z) - I DI”U(gs’\sI)) :
10.6 Lemma :
Under the above assumptions, the derivative
DsR(f,20,20): F — SExME(R,N-1) (10.20)

is surjective.

Proof :
Except for the equivariance aspect, the proof is similar to [Fie2, §3]. In step 1 below we show

that D;ITo(f, Ao, z0) : ¥ — s'K s surjective. In step 2 we show that {0} x MK (R, N —1) C
im D, R(f, Ao, zo) to complete the proof. For these steps we will freely use the following facts
on the relation between Ty and the flow ¥;:

Mo(g, M\, z) = R7NW 50 (0 0 1), (10.21.a)

where 7(g, A, z) is the “Poincaré time” associated to the “Poincaré map” Iy from § = S, to
S). Because 7(f, Ag,Zg) = po/m, m := |H/ K|, we obtain the derivative

Dj”O(f"\O)IO) = PS""—IDI Wpo/m(f) A0, Zo), (10.21.b)
where Pg denotes orthogonal projection onto S’ (along £(0)). Similarly
DI(DIHO(fsAOaIO)) g = Psh—lDI(Dszo/m(f,Ao,2)‘5‘)'g, (10'21'0)

if we choose g such that
9(Xo0,z0(t)) =0, for all t. (10.22)
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Step 1: D,Ily(f,ro,z0): F — s'F s surjecti
By (10.21.b) it is sufficient to show that

D¥y im(fs 20, 70) 7 xK is surjective.
Y
Let '
y(t) = Ds¥(f,20,20) 9 -
Then .
y() = D:f(Ao,zo(t)y(t) + g(do,zo(t)) >
y(0) = o. »
F
Given § € XK | define y;(t) := (tm/po)¥, and §(t) € XK by ‘)
n(t) = Dzf(do,zo(t))y1(t) + 3(t) 3
for 0 <t < pg/m. Next we construct a continuous map ,
g {Po,zo(®) |0<t<po/m}) — XX :
such that .
t — (Mo, zo(t)) i
- Y
has compact support in (0, pg/m), but is nevertheless close enough to §(¢) in L!((0, p/m), X¥) X
to guarantee P
ly(po/m) =91 = |y(po/m) —n1(po/m)| < ¢, (10.23) .
where y solves the equation for § instead of g. This is possible by variation of constants in :
the linear equations for y(t) and y;(¢). We may extend g to 4 x X such that § = 0 outside a :
very small neighborhood of its already defined support in {(Ao,zo(t)) | 0 <t < po/m}. We ;
may even smooth g, keeping (10.23) valid. )
It is the point of our whole detour via ITg that this § can be made G-equivariant on 4 x X. :
Just define 1 )
9(Xyz) = m > 4715(A, 2) s
’ I 1€G .
to make g equivariant. By Grot) = K and the above construction of the support, ¢ = 3 on
{(20,20(t)) | 0 <t < po/m}. L
By (10.23), im D ;¥ /m(f, Ao, Zo) is dense in XK. Because dim XX is finite, this implies "
that Dy¥,,..(f, Ao, Z0) is indeed surjective. iy
Step2: {0} x ME(R,N-1) C im D;R(f, )Xo, 0). .
¢

Restricting to g with g(Ag, zo(t)) = O for all ¢, fact (10.21.c) makes it sufficient to show
surjectivity of

- v e -
-

g = hIDp(D¥p (S, ho,%0)ls?) € ME(R,N x (N -1)) (10.24)

.“l. x

*
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3 1
for this restricted class of g, where MA(R, N x (N — 1) denotes the real K-equivariant Y.
N x (N - 1) matrices (here RN = X, RN-1 = 8"). Let N
<
Si = DuW(f ho,0)S", '
S = {zo()} + S; ::
Z(t) = Dy(D:%(f,20,20)ls') ¢ by
o<
A direct calculation shows that g(Ag, zo(t)) = 0 implies e
Z(t) = sz(AOaIO(t))Z(t) + ng(’\()sz()(t)) ’ (Dzlpt(f, AO):':O”S'); ',-
zZ(0) = o. -,’.
b
- . " e
Given Z € ME(R,N x (N —1)) let Z)(t) := (tm/po)Z, and define §(t) € M¥ (R, N x(N-1)) 3
by -
Z,(t) = Dif(Mo,z0(t))Zi(t) + §(2) B
for 0 <t < py/m. For some given small £ > 0 we now choose g € C! in a neighborhood ""
of {(Au,zo(t)) | 0 <t < po/m} such that g(Ao,z0(t)) = 0 and t — Dzg(ro,zo(t))ls; has :
compact support in (0, pg/m), but such that also Dg(Xg, zo(t)) - (Dz¥:(f, Ao, To)|s*) is close :;-
enough to §(t) in L1((0,po/m), MK (R, N x (N — 1)) to guarantee X
2(p/m) - Zy(p/m)] = |Z(p/m)-2] < e (10.25) 3
As in step 1, g may be taken to be smooth. More to the point, g extends G-equivariantly as ~:
before. Note that D,g()o, zo(t)) is defined consistently with the requirement g(Ao,zo(t)) =0 .
because z,(t) ¢ S; and K leaves both (Z((t)) and S fixed.
As in step 1, (10.25) implies surjectivity of {10.24) and the proof is complete. O "
§10.6 Reduction to minimal period .?
Let G be finite. To construct the sets K,/ for an application of theorem 10.2 we first
introduce plenty of notation. Let 8 C 4 x X be a closed ball around (0,0) of arbitrarily large, 5
but fixed, radius. Given Ty > 0 and fg € Go(B), let Ny be the neighborhood of stationary -
solutions and U the neighborhood of fy as in lemma 10.5. For f € Ug, 0 < ho < |G] and o
k > 3 we define the sets .
Q(f,T,hq): all (A z)€ B\ Np such that
¥,(f,A, z) is periodic with minimal period p, symmetry (10.26.a) -
(H,K,0), and ¥(f, A, z) € B for all ¢; and o
[9R
p<T,orT<p<15T and |H|>ho (10.26.b) N
P(f,T,hy): all (Az)e€ Q(f,T,ho)such that o
A
T<p<15T and |H|=he. (10.27) .-‘,;
‘-\-
Oi(f): all (\,z)€ B with (10.26.a) such that >
y
(A, z) is of type O, i.e. no primitive e-th root of unity, (10.28.a) '
1 < e < k, is an eigenvalue of /1y, or ; (A
b
O
I\.
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(A, z) is one of the non-hyperbolic bifurcation orbits given (10.28.5)
in lemma 5.9 (see also table 5.1, (¢) and definition 5.10).

The set O ,(f) is pronounced “okay of f”. Finally define
Sr(T,ho): all felUy such that

Q(,T)ho) C Ok(f); (10.29)
G(Ty): all f€F such that

(10.28.6) holds for all periodic solutions (X, z(t)) with mi-
nimal period < Ty and with (), z(t)) € 8, for ali ¢.

Suppose that ¥;(f,A,z) = z for some (A, z) € Q(f,T,ho) and p < 1.5T. Then p need not
be the minimal period of (A, z), and likewise we have no control on {H| for the symmetry
(H,K,B). Anyhow, Q(f,T,hy) is compact. Indeed, passing to a limit, minimal periods never
increase and |H| never decreases, cf. §4. On the other hand, suppose that ¥;(f,\,z) = =
for some (A, z) € P(f,T,hg) and § < 1.5T. Then p is the minimal period, and |H| = hy.
Unfortunately, P(f,T,ho) need not be compact, e.g. due to doublings where p jumps, and
due to pitchforks which break H. Hence theorem 10.2 does not apply to P directly. We will
use an induction, instead, to show that Gx(T,ho) is open dense in Uy. There is a uniform
lower bound, say 27, on minimal periods in B (|[Las&Y]). Hence f € Uy implies Q(f,7,1) = 0,
and therefore

Gk(r,1) = Ug. (10.30.a)
From the definitions, it is obvious that Q(f,T,|G| + 1) = Q({, %T, 1), and therefore ‘

2
Ge(T,1GI+1) = Gr(3T.1). (10.30.b)
The proof of lemma 5.9 reduces to the crucial induction step:

if 6x(T,ho) is open dense in Uy , k> T/, (10.30.¢)
then Gx(T,ho — 1) is also open dense in Uj.

Suppose this can be proved. Then, in particular, for k > 2Ty /37
6x(2T,1) is open dense in Uo.

Because all periodic solutions in Ny with minimal period < Ty are hyperbolic anyway, by
lemma 10.5, this implies that

st = N Gl

k>2To /37

is residual in Up. Because Uy was a neighborhood of fy in the open dense set Go(8), we
conclude that G(Tp) itself is residual. Because T was arbitrarily large,

oo

n §(T) is residual.

To=1

By the “localization” described in §10.4, this proves lemma 5.9. Summarizing: the proof of
lemma 5.9 hinges on the induction step (10.30.c).
Before we prove (10.30.c), we collect some continuity properties.

NN S e e i e e e .
AL f.r.-.f LA AR PR 0 ) U T TP I
AR Y A o ..\,-.,-,a,---n. N \ A N N e "4‘\'\[.\: ,

o, of, o,



wlv‘"ﬂ“" Lk o 8 o d

I s N T N T e T O L T PR T W L, T b 10 RS T L TR R - M k1 ML A A - v
, A -F.r : -F T -/' _'a-_'f . Ca .r .r T .v LS < WLt _‘,\‘. SN v‘."-'.' R ARG -\\:\ e\ '-",'\.\}.\'\}"‘-
I ! e . . » i) - » Fa

Ria A%e B RVa QAVe g% Sahlaaletato el ot el el alh Vel ‘atoal tal tad Sl 40 ‘0 0.9 b v "
L'a B g B NAANNTAN U WA WU Y U R A TR T G Y

- 131 -

10.7 Lemma :
For any fo € ¥ and for any open neighborhood N of Q(fy,T,ho) there exists a neighbor-
hood U of fo such that

fel = Q(f,T,ho) C N. (10.31)
Proof : _
Assume the contrary: there exists an open neighborhood N of Q(fo,T,ho) and sequences
fn—Jo
(’\mzn) € Q(f'HT:hO)\ N)'
pn < 1.5T, (Hmeen) .

By compactness we may assume convergence

(’\n:zn) - (’\0)20) € B\('VOUN)’

Pn — Poo

(Hn,Kn,6p) = (Hoo,Koo,6c0).
Here we use that H, < G and G is finite. For p,(H, K, ©) of (Ag, zy), this implies
p < 05ps < 0.75T  ,or
P = po < LST, |H| 2 |Hel,

i.e. (A0,20) € Q(fo,T,ho) C N. By contradiction, this proves the lemma. O

10.8 Lemma :

Assume that fo € G;(T,ho) for some k > T/t and that G, (T,ho) is open. Then there -

exist open neighborhoods U of fo in Gi(T,ho) and N of Q(fo,T,ho) such that for any f € U
the following holds

Q(f,T,ho) €& N (10.32.a)
Q(f,T,ho - 1)N N C 0k(f) (10.32.5)
Q(f,T,ho - D\N = P(f,T,ho-1)\N. (10.32.c)
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Proof :

By lemma 10.7, (10.32.a) is clear. By definition, (10.32.a) implies (10.32.c). It remains to
prove (10.32.b). By compactness of Q(fo,T,ho) it is sufficient to prove the following local
version of (10.32.5):

for any (Ag,z9) € Q(fo,T,ho) there exist neighborhoods
U' of fo in Gx(T,ho) and N’ of (Ao, zo) such that

fel = QUiThe-1nN C Of). (10.32.5),.,.

But indeed the local bifurcation picture near (g, zg) € Q(fo, T,ho) C O x(f) persists under
small perturbations of fy by the implicit function theorem.

However, note that (Ao, o) may have Floquet multipliers which are primitive e-th roots of
unity for some e > k. This does not introduce additional bifurcations within Q(f, T, ho) or
else the bifurcation orbit (Mg, zg) would have period

p < 1.5T/k < 2r,

by virtual period corollary 4.6 and lemma 4.8. But this is impossible because 27 is a lower
bound on the minimal periods.

Because secondary branches at the generic bifurcation points (Ag, zy) out of table 5.1 are
always hyperbolic, locally, we may thus satisfy (10.32.b);,. by the implicit function theorem
argument mentioned above. This completes our proof. O

§10.7 Proof of lemma 5.9

We have to show the induction step (10.30.c) from §10.6. Because Gx(T,ho—1) C G« (T, ho)
and Gx(T,ho) is assumed open dense, it is sufficient to show

for any fo € Gx(T,ho) there exists a neighborhood U of fj (10.33)
in Gx(T,ho) such that YN Gy (T,ho — 1) is open dense in
u.

By lemma 10.8, there exist open neighborhoods U’ of fg in Gx(T,ho) and N’ of Q(fo, T, ho)
such that

UnG(Tiho—1) = {fel'|QU,Tho~1) C Ok(f)} (10.34)
{(fel'|Q(fiT,ho ~ 1)\ N') C O4(f) }
{fel' | P(f,T,ho =)\ N') C O4(f) }.

From §4 we conclude: for each (Ao, z0) € P(fo,T,ho —1)\ N with associated p, (H, K, O)
there exist a neighborhood U(Ao, zo) of fo in U’ and a neighborhood J(Ag, zo) of (Ao, Zo) in
B such that the following holds.

J(Xo,zo) admits a fixed Poincaré section S = {zg} + (£g)+ (10.35.a)
for all f € U(Xo,Z0);

for each f € U(Ag, o), and for each (A, z) € (P(f,T,h¢o — 1)\ (10.35.b)
N'nJ(Xo0,20)), the symmetry of (), z) is again (H, K, 6), |H| =
ho ~ 1, and the minimal period p lies in [T, 1.5T}.
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Note that 1Ty = Iy(f, A, z) is thus well-defined on U()Ag,zg) X N(Mg,Zp). Choose a closed
neighborhood K (Ao, zo) of (Ag, zo) in J(Ag, o).

Fortunately, P(fo, T,ho—1)\N' iscompact. Weselect a finite cover K := U; int K(Aj,z;).
Applying lemma 10.7 a last time to the neighborhood

No= N U Jint K3, 25)
J
of Q(f,T,ho — 1), we obtain a neighborhood

U =" NUOz)) € U CG(T.ho)
J

of fo in Gx(T,ho). We claim that (10.33) holds for this choice of U.
Given our interwoven construction of sets, we now harvest the *frurnt o1 the loam®. Detine

R = (p—=, D)

as in (10.19) for J := J(};,z;) N (4 x 5%), U as above, ¥ := 'K x MEK(R,N - 1).
We apply theorem 10.2 successively to various varieties V = {0} x V' given below; this
part will be similar to the proof of theorem 52. Of course, R is Fredholm with index
i=1-dim MK(R,N—1), proper on X := K(Aj,z;) {4 x 5K) and C3. Hence regularity
assumption (10.6) halds. To prove iransversalitv condition (10.5), just apply Jevxma 10.6.
Note that the assumptions on JIj and in particular on the precise symmetry of any orbit
(f,A,z) € U x K are satisfied by (10.35.a,b) above. This was the reason for the whole
inductive construction.

To finish the proof, we look up codimensions in proposition 10.3. With V' = MK(R, N - 1),
ITy-fixed points in Ax SK are seen to be an embedded one-dimensional submanifold of Ax Sk,
Putting V' = Moy and ¥' = M'sy(k) next, the associated configurations of eigenvalues of
D11, are avoided because codim V' = 2. Putting V' = My we get simple eigenvalues +1
of D, I together with tramsversality ronditions. in particuiar, the representation of X on
the eigenspace has to be real one-dimensional This yields turn, flop, flip, ar flip-flop; except
for the curvature tunditions.

Obviously the curvature conditions are opon in the C3-topology. To prove density, we .

construct a local perturbation of J. For the turn, we may perturb in XX as in the case of
no symmetry, cf. [Fie2]. In all other tase, equivariant Ljapunov-Schmidt reduction [Vanl]
yields a one-dimensional kernel with an equation of the form

0 = =x-a(Az), zeR,
and a(), z) is even in z, by equivariance. For an open dense set of f,
a(A,z) = ap(A)+az())2? + hot.,

ag(Ao) = 0, a2(Ap) # 0, and the curvature condition is satisfied each time. We skip further
details.
Thus an application of theorem 10.2 proves that indeed

Q. The—1N\N' = P(f,The—1D\N' L€ 0O(f)

for an open dense subset of f € U. On the other hand, Q(/, X, ho — 1) NN C O,(f) by
definition of N/, cf. (10.32.b);,.- This completes the induction step (10.33), (10.30.c) and the
proof of lemma 5.9.0 '

The proofs of theorem 5.11 (a, b) will be even easier.

. X "y n - \ . -
) Y 0 w U A LR TR LA A O UL . Nl PO . ¥ LI A S PR S P LTS L N
N “‘“l‘.l whl T 5} - l"- ] . t- -'.a" BN “Y r"'f. g ‘ ,f")] - N" Is “\q.\' fq' f‘.} ’

-----

el

W) I

*, e
"

Yo" :

S
( -"l ’r‘"\ ‘;“r



2 4.8 3.8 9.4 M PN W g TRE AR ", te % dia @'y 42 2% '4's 4%2 &% PN Y UV AT U UV U UYL R RV AT U] ol vaf ot vakb Sed valy 28 ata 18"t ‘At ™18 ‘et gt

-134 -
§10.8 Proof of theorem 5.11 (a)
We consider periodic solutions with symmetry (H,K,0), K = H = G = Z . These

solutions lie in the flow-invariant subspace XC, where the action of G is trivial. Restricting
to generic bifurcations within X¢ we may therefore invoke the standard generic results on

the non-equivariant case |All&M-P& Y2, Fie2, Med, Sot). They tell us that, generically, only X
turns and flip doublings occur within X€. Alternatively we could revive our proof of lemma n
5.9 specializing the induction over minimal period and symmetry to periodic solutions in X€. "

Still there is something to be checked. In theorem 5.11 we claim that table 5.2 lists all .

generic secondary bifurcations. We still have to prove that there are no symmetry breaking
bifurcations from (Ao, o) € 4 x X€ to periodic solutions in X \ X€, generically.

To prove this we employ the period induction from the proof of lemma 5.9, cf. §§10.6,
10.7. We just modify the sets Q(f,T), P(f,T) to consist of periodic solutions in X€, only, g
omitting kg = |H| altogether. Similarly, @ ;(f) should refer to periodic solutions in table J
5.2(a) now. For generic f € ¥ we conclude that the only relevant Floquet multipliers are
simple eigenvalues +1 and -1, generically. If the corresponding eigenvector of the linearized,
G-equivariant Poincaré map

e 2 JE PR

Dzn(/\o,zo) : S’ d S'
fies in §' N X, then we obtain a turn respectively a flip doubling within X¢. But if this ¢
eigenvector was in S’ \ XC then, acting on it with G = Z, the corresponding Floquet (A
nmmitiplies could not be simple. Therefore we see only turns and flip doublings within X,
generically. This completes the proof of theorem 5.11 (a).0 o
§10.9 Proof of theorem 5.11(b)
We consider rotating and frozen waves (Ao, zo(t)). By §5.3 they satisfy :
—aRzg+ f(A, o) =0 (5.3) 3
with Rzy # 0. We will first analyze frozen waves (a = 0), showing that any frozen wave is a :
freezing, generically. Because .
a=(6p)~! (5.4) R
r
for Totating waves (a # 0) it then remains to discuss generic rotating waves, with some lower
hnund on |a| or, equivalently, some upper bound on the minimal period p. Again we will rely e
on a (modified) period induction similar to §§10.6, 10.7. :
Let us prove that any frozen wave (Ao, Zo) is a freezing, generically. From §5.3 we recall "
the Ljapunov-Schmidt reduction
-aQRz+Qf(N,z)=0 & a=a(f ) z) (5°3)Q o]
T(f,A,-’B) = P[—a(f,A,z)Rz+f(A,z)] =0 (5'3)P ’ \(
N

near a frozen wave. We apply transversality theorem 10.2, again, with

R(I’ w) = (a(f”\:z), T(f,A,Z), D, T(f)’\;z)), w = (A, .‘L‘) . (10.36) b
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Notes that a, T, and hence R, are defined only locally. By the usual compactness argument, -t, 1
this will not be a restriction. We consider R as a map N
oY
. N
R: (FxaxSK),, — RxS*xMERN-1), -
where K := G, denotes the isotropy of zg, cf. §10.5, (10.19). :::
We claim that perturbation lemma 10.6 still holds, i.e. :._
o
DsR(f,)0,30) : 7 = RxS"xMERN-1) (10.20) 3
is still surjective. Indeed ‘:
DR(f,do,%0) 9 = (Dya(f,ho,%0) ¢, Pf(%0,%0), PD2f()o,%0)) ]
can be prescribed arbitrarily, choosing an appropriate G-equivariant g € 7. First we define a ,2-
K-equivariant g on (Ax S),. using a K-invariant C® cut-off in S near (Ag, zp). In particular, )
we may prescribe Dyo(f, Ao, Zo) - § because :: ]
(Dra(f,20,20) - 3) QRzo = Q3(Ao,20), X
and because QRzo = Rzp # 0 by construction. We then extend g globally, defining :
- - b 3¢
9(r,z) = p(h)g(A, p(h) " z), oy
if the group orbit Gz hits S; ¢(X, z) := 0 otherwise. Note that g is well-defined by K- -\
equivariance of g on S. This proves lemma 10.6 for R as above. -
We apply theorem 10.2 to -
V = Rx{0)x ME(R,N-1), =
b
first; all assumptions hold as usual. We conclude that for generic f the solutions (A, z) € E"
Ax SK of >
T(f,Az) = O |
form a C* branch (A, z)) through (Ao, zg), locally. Putting '.
5
V := {0} x {0} x M¥(R,N ~ 1) =]
-._:
next, we see that
A — C!(f,A, z/\) t.
has only simple zeros, generically. This takes care of transversality condition (5.7.b) for a t::
freezing. To show genericity of the hyperbolicity condition (5.7.a)' we put N
\- J
Ly
V. o= {0} x {0} x Mo :
Sa
Then '.'_.5
R(f,, )nV = 0, N
for generic f, because assumption (10.8.6) holds: ;';
ivdimV = (-1+1-dim ME(R,N - 1)) +dim M1 = ~3
= -codimMyg = -1 < 0, N
R
.
o
5
N
. . " = R Mt A ™ . e » \ .- L L, » . ~
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using codim Mj ¢ = 1 from proposition 10.3. Therefore D, T (f, Ao, zo) is indeed hyperbolic,
as in (5.7.a), at a generic frozen wave. This proves that any frozen wave is a freezing,
generically. .

Let us now turn to rotating waves (a # 0). Before we can apply transversality theorem
10.2, we slightly modify the setting of our period induction §§10.6, 10.7. Working within
a large closed ball B, as in §10.6, we admit as elements of the sets @ and P only periodic
solutions (A, z) € B\ Ny with symmetry (H,K,0), H = Z, 6 # 0, i.e. we admit only
rotating waves. Notationally, we replace

Q(f,T,ho) | (Q(f,T)
Q(f:TrhO_l) Q(fa%T)
P(f,T,ho—l) P(fng)
Gk(T,ho) 9k(T)
Gx(T,ho - 1) ] | Gk(3T).

Of course, O g (f) then refers to bifurcations of rotating waves listed in table (5.2(b)). We
also replace the induction step :

if gk(gT) is open dense in Ug, k > T /7, then Gx(T) is also (10.30.c)’
open dense in Ug .

Then continuity lemmata 10.7, 10.8 hold verbatim, along with their proofs. The proof of
lemma 5.9 applies up to the “fruit of the loom”. In particular, we emphasize that all rotating
waves in a small neighborhood Ny of the set of stationary solutions are hyperbolic, because
such solutions arise either from centers or from freezings. Moreover, there is a uniform lower
bound

|a(f ) Az )l 2 o > 0

for any rotating wave (A, z) € B \ Ny, as long as f stays in a small neighborhood U of f.
We now modify R slightly, defining

1

R(f,\z) := TAY)]

(T(fi\ =), D:T(£,),2))

with the usual local domain of definition. As before, perturbation lemma 10.6 holds. We
apply theorem 10.2 to
V = {0} X Mé‘o,

first. Then
R(fr Yy ) ¢ 14 ’

for generic f, because assumption (10.8.b) holds:
i+dimV = l-codimMg = -1 < 0,

using codim M'z,o = 2 from proposition 10.3. We relate eigenvalues of D, T (f, Ao, o) at a
rotating wave to its Floquet multipliers by (5.5.0), putting t =p, ap=1/6 :

D:IT(f,X0,20) = P p(1/6) BIP[(—R+£sz(ko,zo))/9]|5n (10.37)
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= p(1/6) e::p(éDzT(fJo,zo)) .

Thus D T(f, Ao, Z0) ¢ M5 o(k) implies that D JI(f, ,\o,zo))lel, and hence D I1(f, Ay, o)
itself, does not possess an eigenvalue g which is an e-th root of unity, e < k, except possibly
for those coming from an eigenvalue 0 of D, T(f, Ay, Zp). Taking

V= {0} X M2.0 ’ V= {0} X Ml.O ’

successively, such an eigenvalue 0 has to be simple. In particular, K = {0,1/6, ---,(6 - 1)/6}
acts by p* on the one-dimensional eigenspace. Taking

vV = (0} x MS(R,N-1),

the case of p* corresponds to a turn, because the zeros (A, z) of T (f, ) yield one-dimensional
submanifolds of A x S¥, generically. The transversality condition (3.7.5) is satisfied generi-
cally, by the above choice V = {0} x M, . The curvature condition (3.7.c) is generic by
an explicit perturbation, as discussed in the discrete case. The case of representation p~
corresponds to a flop for T(f,-,), generically, i.e. to a flop doubling of rotating waves, by
analogous arguments.

Finally, we conclude from our formula (10.37) for the linearized Poincaré map that the
above bifurcations, turn and flop doubling, constitute the only bifurcations of rotating waves
(aside from freezing). In particular, symmetry breaking bifurcations to periodic solutions
with symmetry (fl,f(,é), H < H = Z, are nongeneric. Indeed, in any of the above
bifurcations, the local branches are determined uniquely by an application of the implicit
function theorem. And all these branches consist of rotating waves, only. This completes the
proof of theorem 5.11(b), the proof of theorem 5.11 as a whole, and the opus.O
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